Advertisement

Antonie van Leeuwenhoek

, Volume 95, Issue 1, pp 101–109 | Cite as

Expression of the MtsA lipoprotein of Streptococcus agalactiae A909 is regulated by manganese and iron

  • Beverley A. Bray
  • Iain C. Sutcliffe
  • Dean J. Harrington
Short Communication

Abstract

Metal ion acquisition and homeostasis are essential for bacterial survival, growth and physiology. A family of metal ion, ABC-type import systems have been identified in Gram-positive bacteria, in which the solute-binding proteins are predicted to be membrane-anchored lipoproteins. The prediction that the MtsA protein of Streptococcus agalactiae A909 is a lipoprotein was confirmed. The expression of MtsA was co-ordinately regulated by the presence of both manganese and ferrous ions suggesting that MtsA may be involved in the uptake of both these ions. MtsA was shown to be expressed at levels of ferrous ions known to be present in amniotic fluid, a growth medium for S. agalactiae during neonatal infection.

Keywords

ABC transport Group B Streptococcus Iron Lipoprotein Manganese 

Notes

Acknowledgments

We thank Jamie Leigh (Institute for Animal Health, Berkshire, UK) for the anti-MtuA antiserum and Thelma Howley (University of Bradford) for preliminary experiments. Globomycin was generously supplied by Masatoshi Inukai (Sankyo Co. Ltd., Tokyo, Japan).

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programmes. Nucleic Acids Res 25:3389–3402. doi: 10.1093/nar/25.17.3389 PubMedCrossRefGoogle Scholar
  2. Arirachakaran P, Benjavongkulchai E, Luengpalin S, Adjic D, Banas JA (2007) Manganese affects Streptococcus mutans virulence. Caries Res 41:503–511. doi: 10.1159/000110883 PubMedCrossRefGoogle Scholar
  3. Bates CS, Toukoki C, Neely MN, Eichenbaum Z (2005) Characterization of MtsR, a new metal regulator in group A Streptococcus, involved in iron acquisition and virulence. Infect Immun 73:5743–5753. doi: 10.1128/IAI.73.9.5743-5753.2005 PubMedCrossRefGoogle Scholar
  4. Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256:1604–1607PubMedGoogle Scholar
  5. Claverys J-P (2001) A new family of high affinity ABC manganese and zinc permeases. Res Microbiol 152:231–243. doi: 10.1016/S0923-2508(01)01195-0 PubMedCrossRefGoogle Scholar
  6. Cserzo M, Wallin E, Simon I, von Heijne G, Elofsson A (1997) Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng 10:673–676. doi: 10.1093/protein/10.6.673 PubMedCrossRefGoogle Scholar
  7. Dintilhac A, Alloing G, Granadel C, Claverys J-P (1997) Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol Microbiol 25:727–739. doi: 10.1046/j.1365-2958.1997.5111879.x PubMedCrossRefGoogle Scholar
  8. Farley MM (2001) Group B streptococcal disease in non-pregnant adults. Clin Infect Dis 33:556–561. doi: 10.1086/322696 PubMedCrossRefGoogle Scholar
  9. Garmory HS, Titball RW (2004) ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies. Infect Immun 72:6757–6763. doi: 10.1128/IAI.72.12.6757-6763.2004 PubMedCrossRefGoogle Scholar
  10. Glaser P, Rusniok C, Buchrieser C, Chevalier F, Frangeul L, Msadek T, Zouine M, Couve E, Lalioui L, Poyart C, Trieu-Cuot P, Kunst F (2002) Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease. Mol Microbiol 45:1499–1513. doi: 10.1046/j.1365-2958.2002.03126.x PubMedCrossRefGoogle Scholar
  11. Gor DO, Ding X, Briles DE, Jacobs MR, Greenspan NS (2005) Relationship between surface accessibility for PpmA, PsaA, and PspA and antibody-mediated immunity to systemic infection by Streptococcus pneumoniae. Infect Immun 73:1304–1312. doi: 10.1128/IAI.73.3.1304-1312.2005 PubMedCrossRefGoogle Scholar
  12. Hamilton A, Harrington DJ, Sutcliffe IC (2000) Characterization of acid phosphatase activities in the equine pathogen Streptococcus equi. Syst Appl Microbiol 23:325–329PubMedGoogle Scholar
  13. Hanks TS, Liu M, McClure MJ, Fukumura M, Duffy A, Lei B (2006) Differential regulation of iron- and manganese-specific MtsABC and heme-specific HtsABC transporters by the metalloregulator MtsR of group A Streptococcus. Infect Immun 74:5132–5139. doi: 10.1128/IAI.00176-06 PubMedCrossRefGoogle Scholar
  14. Heath PT, Balfour G, Weisner AM, Efstratiou A, Lamagni TL, Tighe H, O’Connell LA, Cafferkey M, Verlander NQ, Nicoll A, McCartney AC, PHLS group B Streptococcus working group (2004) Group B streptococcal disease in UK and Irish infants younger than 90 days. Lancet 363:292–294. doi: 10.1016/S0140-6736(03)15389-5 PubMedCrossRefGoogle Scholar
  15. Henneke P, Dramsi S, Mancuso G, Chraibi K, Pellegrini E, Theilacker C, Hubner J, Santos-Sierra S, Teti G, Golenbock DT, Poyart C, Trieu-Cuot P (2008) Lipoproteins are critical TLR2 activating toxins in group B streptococcal sepsis. J Immunol 180:6149–6158PubMedGoogle Scholar
  16. Hill PJ, Cockayne A, Landers P, Morrissey JA, Sims CM, Williams P (1998) SirR, a novel iron-dependent repressor in Staphylococcus epidermidis. Infect Immun 66:4123–4129PubMedGoogle Scholar
  17. Horsburgh MJ, Wharton SJ, Karavalos M, Foster SJ (2002a) Manganese: elemental defense for a life with oxygen? Trends Microbiol 10:496–501. doi: 10.1016/S0966-842X(02)02462-9 PubMedCrossRefGoogle Scholar
  18. Horsburgh MJ, Wharton SJ, Cox AG, Ingham E, Peacock S, Foster SJ (2002b) MntR modulates expression of the PerR regulon and superoxide resistance in Staphylococcus aureus through control of manganese uptake. Mol Microbiol 44:1269–1286. doi: 10.1046/j.1365-2958.2002.02944.x PubMedCrossRefGoogle Scholar
  19. Inukai M, Takeuchi M, Shimizu K, Arai M (1978) Mechanism of action of globomycin. J Antibiot 31:1203–1205PubMedGoogle Scholar
  20. Jakubovics NS, Jenkinson HF (2001) Out of the iron age: new insights into the critical role of manganese homeostasis in bacteria. Microbiology 147:1709–1718PubMedGoogle Scholar
  21. Jakubovics NS, Smith AW, Jenkinson HF (2000) Expression of the virulence-related Sca (Mn2+) permease in Streptococcus gordonii is regulated by a diphtheria toxin metallorepressor-like protein ScaR. Mol Microbiol 38:140–153. doi: 10.1046/j.1365-2958.2000.02122.x PubMedCrossRefGoogle Scholar
  22. Janulczyk R, Pallon J, Björck L (1999) Identification, characterization of a Streptococcus pyogenes ABC transporter with multiple specificity for metal ions. Mol Microbiol 34:596–606. doi: 10.1046/j.1365-2958.1999.01626.x PubMedCrossRefGoogle Scholar
  23. Janulczyk R, Ricci S, Björck L (2003) MtsABC is important for manganese, iron transport, oxidative stress resistance, virulence of Streptococcus pyogenes. Infect Immun 71:2656–2664. doi: 10.1128/IAI.71.5.2656-2664.2003 PubMedCrossRefGoogle Scholar
  24. Jenkinson HF (1994) Cell surface protein receptors in oral Streptococci. FEMS Microbiol Lett 121:133–140. doi: 10.1111/j.1574-6968.1994.tb07089.x PubMedCrossRefGoogle Scholar
  25. Johnston JW, Myers LE, Ochs MM, Benjamin WH Jr, Briles DE, Hollingshead SK (2004) Lipoprotein PsaA in virulence of Streptococcus pneumoniae: surface accessibility, role in protection from superoxide. Infect Immun 72:5858–5867. doi: 10.1128/IAI.72.10.5858-5867.2004 PubMedCrossRefGoogle Scholar
  26. Johnston JW, Briles DE, Myers LE, Hollingshead SK (2006) Mn2+-dependent regulation of multiple genes in Streptococcus pneumoniae through PsaR, resultant impact on virulence. Infect Immun 74:1171–1180. doi: 10.1128/IAI.74.2.1171-1180.2006 PubMedCrossRefGoogle Scholar
  27. Johri AK, Paoletti LC, Glaser P, Dua M, Sharma PK, Grandi G, Rappuoli R (2006) Group B Streptococcus: global incidence and vaccine development. Nat Rev Microbiol 4:932–942. doi: 10.1038/nrmicro1552 PubMedCrossRefGoogle Scholar
  28. Keefe GP (1997) Streptococcus agalactiae mastitis: a review. Can Vet J 38:429–437PubMedGoogle Scholar
  29. Kolenbrander PE, Andersen RN, Baker RA, Jenkinson H (1998) The adhesion-associated sca operon in Streptococcus gordonii encodes an inducible high-affinity ABC transporter for Mn2+ uptake. J Bacteriol 180:290–295PubMedGoogle Scholar
  30. Lawrence MC, Pilling PA, Epa VC, Berry AM, Ogunniyi AD, Paton JC (1998) The crystal structure of pneumococcal surface antigen PsaA reveals a metal-binding site, a novel structure for a putative ABC-type binding protein. Structure 6:1553–1561. doi: 10.1016/S0969-2126(98)00153-1 PubMedCrossRefGoogle Scholar
  31. Lei B, Liu M, Chesney GL, Musser JM (2004) Identification of new candidate vaccine antigens made by Streptococcus pyogenes: purification, characterization of 16 putative extracellular lipoproteins. J Infect Dis 189:79–89. doi: 10.1086/380491 PubMedCrossRefGoogle Scholar
  32. Lentner C (1981) Units of measurement, body fluids, composition of the body, nutrition, 8th edn. Basle, SwitzerlandGoogle Scholar
  33. Loisel E, Jacquamet L, Serre L, Bauvois C, Ferrer JL, Vernet T, Di Guilmi AM, Durmort C (2008) AdcAII, a new pneumococcal Zn-binding protein homologous with ABC transporters: biochemical and structural analysis. J Mol Biol 381:594–606. doi: 10.1016/j.jmb.2008.05.068 PubMedCrossRefGoogle Scholar
  34. Low YL, Jakubovics NS, Flatman JC, Jenkinson HF, Smith AW (2003) Manganese-dependent regulation of endocarditis-associated virulence factor EfaA of Enterococcus faecalis. J Med Microbiol 52:113–119. doi: 10.1099/jmm.0.05039-0 PubMedCrossRefGoogle Scholar
  35. Marra A, Lawson S, Asundi JS, Brigham D, Hromockyj AE (2002) In vivo characterization of the psa genes from Streptococcus pneumoniae in multiple models of infection. Microbiology 148:1483–1491PubMedGoogle Scholar
  36. McAllister LJ, Tseng H-J, Ogunniyi AD, Jennings MP, McEwan AG, Paton JC (2004) Molecular analysis of the psa permease complex of Streptococcus pneumoniae. Mol Microbiol 53:889–901. doi: 10.1111/j.1365-2958.2004.04164.x PubMedCrossRefGoogle Scholar
  37. Nakagawa I, Kurokawa K, Yamashita A, Nakata M, Tomiyasu Y, Okahashi N, Kawabata S, Yamazaki K, Shiba T, Yasunaga T, Hayashi H, Hattori M, Hamada S (2003) Genome sequence of an M3 strain of Streptococcus pyogenes reveals a large-scale rearrangement in invasive strains, new insights into phage evolution. Genome Res 13:1042–1055. doi: 10.1101/gr.1096703 PubMedCrossRefGoogle Scholar
  38. Paik S, Brown A, Munro CL, Cornelissen CN, Kitten T (2003) The sloABCR operon of Streptococcus mutans encodes an Mn, Fe transport system required for endocarditis virulence, its Mn-dependent repressor. J Bacteriol 185:5967–5975. doi: 10.1128/JB.185.20.5967-5975.2003 PubMedCrossRefGoogle Scholar
  39. Papp-Wallace KM, Maguire ME (2006) Manganese transport and the role of manganese in virulence. Annu Rev Microbiol 60:187–209. doi: 10.1146/annurev.micro.60.080805.142149 PubMedCrossRefGoogle Scholar
  40. Rapola S, Jäntti V, Haikala R, Syrjänen R, Carlone GM, Sampson JS, Briles DE, Paton JC, Takal AK, Kilpi TM, Käyhty H (2000) Natural development of antibodies to pneumococcal surface protein A, pneumococcal surface adhesion A, pneumolysin in relation to pneumococcal carriage, acute otitis media. J Infect Dis 182:1146–1152. doi: 10.1086/315822 PubMedCrossRefGoogle Scholar
  41. Rolerson E, Swick A, Newlon L, Palmer C, Pan Y, Keeshan B, Spatafora G (2006) The SloR/Dlg metalloregulator modulates Streptococcus mutans virulence gene expression. J Bacteriol 188:5033–5044. doi: 10.1128/JB.00155-06 PubMedCrossRefGoogle Scholar
  42. Sampson JS, O’Connor SP, Stinson AR, Tharpe JA, Russell H (1994) Cloning, nucleotide sequence analysis of psaA, the Streptococcus pneumoniae gene encoding a 37-kilodalton protein homologous to previously reported Streptococcus sp. adhesins. Infect Immun 62:319–324PubMedGoogle Scholar
  43. Schuchat A (2001) Group B streptococcal disease: from trials, tribulations to triumph, trepidation. Clin Infect Dis 33:751–756. doi: 10.1086/322697 PubMedCrossRefGoogle Scholar
  44. Smith AJ, Ward PN, Field TR, Jones CL, Lincoln RA, Leigh JA (2003) MtuA, a lipoprotein receptor antigen from Streptococcus uberis is responsible for acquisition of manganese during growth in milk, is essential for infection of the lactating bovine mammary gland. Infect Immun 71:4842–4849. doi: 10.1128/IAI.71.9.4842-4849.2003 PubMedCrossRefGoogle Scholar
  45. Spatafora G, Moore M, Landgren S, Stonehouse E, Michalek S (2001) Expression of Streptococcus mutans fimA is iron-responsive and regulated by a DtxR homologue. Microbiology 147:1599–1610PubMedGoogle Scholar
  46. Sun X, Ge R, Chiu J-F, Sun H, He Q-Y (2008) Lipoprotein MtsA of MtsABC in Streptococcus pyogenes primarily binds ferrous ion with bicarbonate as a synergistic anion. FEBS Lett 582:1351–1354. doi: 10.1016/j.febslet.2008.03.020 PubMedCrossRefGoogle Scholar
  47. Sutcliffe IC, Harrington DJ (2002) Pattern searches for the identification of putative lipoprotein genes in Gram positive bacterial genomes. Microbiology 148:2055–2064Google Scholar
  48. Sutcliffe IC, Harrington DJ (2004) Putative lipoproteins of Streptococcus agalactiae identified by bioinformatic genome analysis. Antonie Van Leeuwenhoek 85:305–315. doi: 10.1023/B:ANTO.0000020166.29833.9a PubMedCrossRefGoogle Scholar
  49. Sutcliffe IC, Russell RRB (1995) Lipoproteins of Gram-positive bacteria. J Bacteriol 177:1123–1128PubMedGoogle Scholar
  50. Tettelin H, Masignani V, Cieslewicz MJ, Eisen JA, Peterson S, Wessels MR, Paulsen IT, Nelson KE, Margarit I, Read TD, Madoff LC, Wolf AM, Beanan MJ, Brinkac LM, Daugherty SC, DeBoy RT, Durkin AS, Kolonay JF, Madupu R, Lewis MR, Radune D, Fedorova NB, Scanlan D, Khouri H, Mulligan S, Carty HA, Cline RT, Van Aken SE, Gill J, Scarselli M, Mora M, Iacobini ET, Brettoni C, Galli G, Mariani M, Vegni F, Maione D, Rinaudo D, Rappuoli R, Telford JL, Kasper DL, Grandi G, Fraser CM (2002) Complete genome sequence, comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae. Proc Natl Acad Sci USA 99:12391–12396. doi: 10.1073/pnas.182380799 PubMedCrossRefGoogle Scholar
  51. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, DeBoy RT, Davidsen TM, Mora M, Scarselli M, Ros IMY, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, Brinkac LM, Dodson RJ, Rosovitz MJ, Sullivan SA, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou LW, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, O’Connor KJB, Smith S, Utterback TR, White O, Rubens CE, Grandi G, Madoff LC, Kasper DL, Telford JL, Wessels MR, Rappuoli R, Fraser CM (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci USA 102:13950–13955. doi: 10.1073/pnas.0506758102 PubMedCrossRefGoogle Scholar
  52. Vorobieva EI, Meringova LF, Leontieva GF, Grabovskaya KB, Suvorov AN (2005) Analysis of recombinant group B streptococcal protein ScaAB and evaluation of its immunogenicity. Folia Microbiol (Praha) 50:172–176. doi: 10.1007/BF02931468 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Beverley A. Bray
    • 1
  • Iain C. Sutcliffe
    • 2
  • Dean J. Harrington
    • 1
  1. 1.Division of Biomedical SciencesUniversity of BradfordWest YorkshireUK
  2. 2.Northumbria UniversityNewcastle upon TyneUK

Personalised recommendations