Antonie van Leeuwenhoek

, 96:171

Lead(II) resistance in Cupriavidus metallidurans CH34: interplay between plasmid and chromosomally-located functions

  • Safiyh Taghavi
  • Celine Lesaulnier
  • Sebastien Monchy
  • Ruddy Wattiez
  • Max Mergeay
  • Daniel van der Lelie
Original Paper

Abstract

Proteome and transcriptome analysis, combined with mutagenesis, were used to better understand the response of Cupriavidus metallidurans CH34 against lead(II). Structural Pb(II)-resistance genes of the pMOL30-encoded pbrUTRABCD operon formed the major line of defense against Pb(II). However, several general stress response mechanisms under the control of alternative sigma factors such as σ24/rpoK, σ32/rpoH and σ28/fliA were also induced. In addition, the expression of the pbrR2cadA pbrC2 operon of the CMGI-1 region and the chromosomally encoded zntA were clearly induced in the presence of Pb(II), although their respective gene products were not detected via proteomics. After inactivation of the pbrA, pbrB or pbrD genes, the expression of the pbrR2cadA pbrC2 operon went up considerably. This points towards synergistic interactions between pbrUTRABCD and pbrR2cadA pbrC2 to maintain a low intracellular Pb(II) concentration, where pbrR2cadA pbrC2 gene functions can complement and compensate for the mutations in the pbrA and pbrD genes. This role of zntA and cadA to complement for the loss of pbrA was further confirmed by mutation analysis. The pbrB∷Tn(Km2) mutation resulted in the most significant decrease of Pb(II) resistance, indicating that Pb(II) sequestration, avoiding re-entry of this toxic metal ion, forms a critical step in the pbr-encoded Pb(II) resistance mechanism.

Keywords

Cupriavidus metallidurans CH34 Lead (II) resistance pbrUTRABCD operon zntA  pbrR2 cadA pbrC2 Gene expression 

Supplementary material

10482_2008_9289_MOESM1_ESM.docx (12 kb)
(DOCX 12 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Ayub ND, Pettinari MJ, Ruiz JA, Lopez NI (2004) A polyhydroxybutyrate-producing Pseudomonas sp. isolated from antarctic environments with high stress resistance. Curr Microbiol 49:170–174PubMedCrossRefGoogle Scholar
  3. Berg JM, Godwin HA (1997) Lessons from zinc-binding peptides. Annu Rev Biophys Biomol Struct 26:357–371PubMedCrossRefGoogle Scholar
  4. Borremans B, Hobman JL, Provoost A, Brown NL, van der Lelie D (2001) Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol 183:5651–5658PubMedCrossRefGoogle Scholar
  5. Brocklehurst KR, Hobman JL, Lawley B, Blank L, Marshall SJ, Brown NL, Morby AP (1999) ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol Microbiol 31:893–902PubMedCrossRefGoogle Scholar
  6. Chen P, Greenberg B, Taghavi S, Romano C, van der Lelie D, He CA (2005) An exceptionally selective lead(II)-regulatory protein from Ralstonia metallidurans: development of a fluorescent lead(II) probe. Angew Chem Int Ed 44:2715–2719CrossRefGoogle Scholar
  7. Chen PR, Wasinger EC, Zhao J, van der Lelie D, Chen LX, He C (2007) Spectroscopic insights into lead(II) coordination by the selective lead(II)-binding protein PbrR691. J Am Chem Soc 129:12350–12351PubMedCrossRefGoogle Scholar
  8. Claudio ES, Godwin HA, Magyar JS (2003) Fundamental coordination chemistry, environmental chemistry, and biochemistry of lead(II). Prog Inorg Chem 51:1–144Google Scholar
  9. Diels L, Sadouk A, Mergeay M (1989) Large plasmids governing multiple resistance to heavy metals: a genetic approach. Toxicol Environ Chem 23:79–89CrossRefGoogle Scholar
  10. Grosse C, Friedrich S, Nies DH (2007) Contribution of extracytoplasmic function sigma factors to transition metal homeostasis in Cupriavidus metallidurans strain CH34. J Mol Microbiol Biotechnol 12:227–240PubMedCrossRefGoogle Scholar
  11. Legatzki A, Grass G, Anton A, Rensing C, Nies DH (2003) Interplay of the czc system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans. J Bacteriol 185:4354–4361PubMedCrossRefGoogle Scholar
  12. Levinson HS, Mahler I (1998) Phosphatase activity and lead resistance in Citrobacter freundii and Staphylococcus aureus. FEMS Microbiol Lett 161:135–138PubMedCrossRefGoogle Scholar
  13. Lewis JA, Cohen SM (2004) Addressing lead toxicity: complexation of lead(II) with thiopyrone and hydroxypyridinethione O,S mixed chelators. Inorg Chem 43:6534–6536PubMedCrossRefGoogle Scholar
  14. Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science Books, Mill Valley, CAGoogle Scholar
  15. Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Vangijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334PubMedGoogle Scholar
  16. Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J, van der Lelie D, Wattiez R (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 27:385–410PubMedCrossRefGoogle Scholar
  17. Monchy S, Benotmane MA, Wattiez R, van Aelst S, Auquier V, Borremans B, Mergeay M, Taghavi S, van der Lelie D, Vallaeys T (2006a) Transcriptomic and proteomic analyses of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34. Microbiology 152:1765–1776PubMedCrossRefGoogle Scholar
  18. Monchy S, Vallaeys T, Bossus A, Mergeay M (2006b) Metal transport ATPase genes from Cupriavidus metallidurans CH34: a transcriptomic approach. Int J Environ Anal Chem 86:677–692CrossRefGoogle Scholar
  19. Monchy S, Benotmane MA, Janssen P, Vallaeys T, Taghavi S, van der Lelie D, Mergeay M (2007) Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J Bacteriol 189:7417–7425PubMedCrossRefGoogle Scholar
  20. Neuwald AF (1997) An unexpected structural relationship between integral membrane phosphatases and soluble haloperoxidases. Protein Sci 6:1764–1767PubMedCrossRefGoogle Scholar
  21. Noel-Georis I, Vallaeys T, Chauvaux R, Monchy S, Falmagne P, Mergeay M, Wattiez R (2004) Global analysis of the Ralstonia metallidurans proteome: prelude for the large-scale study of heavy metal response. Proteomics 4:151–179PubMedCrossRefGoogle Scholar
  22. Rawlings ND, Morton FR, Kok CY, Kong J, Barrett AJ (2008) MEROPS: the peptidase database. Nucleic Acids Res 36:D320–D325PubMedCrossRefGoogle Scholar
  23. Rensing C, Mitra B, Rosen BP (1998a) A Zn(II)-translocating P-type ATPase from Proteus mirabilis. Biochem Cell Biol 76:787–790PubMedCrossRefGoogle Scholar
  24. Rensing C, Sun Y, Mitra B, Rosen BP (1998b) Pb(II)-translocating P-type ATPases. J Biol Chem 273:32614–32617PubMedCrossRefGoogle Scholar
  25. Roane TM (1999) Lead resistance in two bacterial isolates from heavy metal-contaminated soils. Microb Ecol 37:218–224PubMedCrossRefGoogle Scholar
  26. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  27. Shimoni-Livny L, Glusker JP, Bock CW (1998) Lone pair functionality in divalent lead compounds. Inorg Chem 37:1853–1867CrossRefGoogle Scholar
  28. Taghavi S, van der Lelie D, Mergeay M (1994) Electroporation of Alcaligenes eutrophus with (mega) plasmids and genomic DNA fragments. Appl Environ Microbiol 60:3585–3591PubMedGoogle Scholar
  29. Trajanovska S, Britz ML, Bhave M (1997) Detection of heavy metal ion resistance genes in gram-positive and gram-negative bacteria isolated from a lead-contaminated site. Biodegradation 8:113–124PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Safiyh Taghavi
    • 1
  • Celine Lesaulnier
    • 1
  • Sebastien Monchy
    • 1
    • 2
  • Ruddy Wattiez
    • 3
  • Max Mergeay
    • 2
  • Daniel van der Lelie
    • 1
  1. 1.Biology DepartmentBrookhaven National LaboratoryUptonUSA
  2. 2.Molecular and Cellular BiologyBelgian Center for Nuclear Energy, SCK·CENMolBelgium
  3. 3.Service de Chimie BiologiqueUniversité de Mons-HainautMonsBelgium

Personalised recommendations