Antonie van Leeuwenhoek

, 96:115 | Cite as

Cupriavidus metallidurans: evolution of a metal-resistant bacterium

Review Paper

Abstract

Cupriavidus metallidurans CH34 has gained increasing interest as a model organism for heavy metal detoxification and for biotechnological purposes. Resistance of this bacterium to transition metal cations is predominantly based on metal resistance determinants that contain genes for RND (resistance, nodulation, and cell division protein family) proteins. These are part of transenvelope protein complexes, which seem to detoxify the periplasm by export of toxic metal cations from the periplasm to the outside. Strain CH34 contains 12 predicted RND proteins belonging to a protein family of heavy metal exporters. Together with many efflux systems that detoxify the cytoplasm, regulators and possible metal-binding proteins, RND proteins mediate an efficient defense against transition metal cations. To shed some light into the origin of genes encoding these proteins, the genomes of C. metallidurans CH34 and six related proteobacteria were investigated for occurrence of orthologous and paralogous proteins involved in metal resistance. Strain CH34 was not much different from the other six bacteria when the total content of transport proteins was compared but CH34 had significantly more putative transition metal transport systems than the other bacteria. The genes for these systems are located on its chromosome 2 but especially on plasmids pMOL28 and pMOL30. Cobalt–nickel and chromate resistance determinants located on plasmid pMOL28 evolved by gene duplication and horizontal gene transfer events, leading to a better adaptation of strain CH34 to serpentine-like soils. The czc cobalt–zinc–cadmium resistance determinant, located on plasmid pMOL30 in addition copper, lead and mercury resistance determinants, arose by duplication of a czcICAB core determinant on chromosome 2, plus addition of the czcN gene upstream and the genes czcD, czcRS, czcE downstream of czcICBA. C. metallidurans apparently evolved metal resistance by horizontal acquisition and by duplication of genes for transition metal efflux, mostly on the two plasmids, and decreased the number of uptake systems for those metals.

Keywords

Cupriavidus metallidurans Ralstonia Wautersia Alcaligenes CH34 H16 JMP134 Transport proteins Metal resistance RND CDF CHR P-type ATPases Evolution 

References

  1. Akama H, Matsuura T, Kashiwagi S, Yoneyama H, Narita SI, Tsukihara T et al (2004) Crystal structure of the membrane fusion protein, MexA, of the multidrug transporter in Pseudomonas aeruginosa. J Biol Chem 279:25939–25942. doi:10.1074/jbc.C400164200 PubMedCrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389 PubMedCrossRefGoogle Scholar
  3. Alvarez AH, Moreno-Sanchez R, Cervantes C (1999) Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. J Bacteriol 181:7398–7400PubMedGoogle Scholar
  4. Andersen C, Hughes C, Koronakis V (2001) Protein export and drug efflux through bacterial channel-tunnels. Curr Opin Cell Biol 13:412–416. doi:10.1016/S0955-0674(00)00229-5 PubMedCrossRefGoogle Scholar
  5. Anton A, Große C, Reißman J, Pribyl T, Nies DH (1999) CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp. strain CH34. J Bacteriol 181:6876–6881PubMedGoogle Scholar
  6. Anton A, Weltrowski A, Haney JH, Franke S, Grass G, Rensing C et al (2004) Characteristics of zinc transport by two bacterial cation diffusion facilitators from Ralstonia metallidurans and Escherichia coli. J Bacteriol 186:7499–7507. doi:10.1128/JB.186.22.7499-7507.2004 PubMedCrossRefGoogle Scholar
  7. Baker AJM (1987) Metal tolerance in plants. New Phytol 106:93–111Google Scholar
  8. Borremans B, Hobman JL, Provoost A, Brown NL, Van der Lelie D (2001) Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol 183:5651–5658. doi:10.1128/JB.183.19.5651-5658.2001 PubMedCrossRefGoogle Scholar
  9. Braun V, Hantke K, Koster W (1998) Bacterial iron transport: mechanisms, genetics, and regulation. Met Ions Biol Syst 35:67–145PubMedGoogle Scholar
  10. Busch W, Saier MHJ (2002) The transporter classification (TC) system. Crit Rev Biochem Mol Biol 37:287–337. doi:10.1080/10409230290771528 PubMedCrossRefGoogle Scholar
  11. Cervantes C, Ohtake H, Chu L, Misra TK, Silver S (1990) Cloning, nucleotide sequence, and expression of the chromate resistance determinant of Pseudomonas aeruginosa plasmid pUM505. J Bacteriol 172:287–291PubMedGoogle Scholar
  12. Chain PS, Denef VJ, Konstantinidis KT et al (2006) Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci USA 103:15280–15287. doi:10.1073/pnas.0606924103 PubMedCrossRefGoogle Scholar
  13. Chao Y, Fu D (2004) Thermodynamic studies of the mechanism of metal binding to the Escherichia coli zinc transporter YiiP. J Biol Chem 279:17173–17180. doi:10.1074/jbc.M400208200 PubMedCrossRefGoogle Scholar
  14. Dastidar V, Mao W, Lomovskaya O, Zgurskaya HI (2007) Drug-induced conformational changes in multidrug efflux transporter AcrB from Haemophilus influenzae. J Bacteriol 189:5550–5558. doi:10.1128/JB.00471-07 PubMedCrossRefGoogle Scholar
  15. Denef VJ, Park J, Tsoi TV, Rouillard J-M, Zhang H, Wibbenmeyer JA et al (2004) Biphenyl and benzoate metabolism in a genomic context: outlining genome-wide metabolic networks in Burkholderia xenovorans LB400. Appl Environ Microbiol 40:4961–4970. doi:10.1128/AEM.70.8.4961-4970.2004 CrossRefGoogle Scholar
  16. Diels L, Mergeay M (1990) DNA probe-mediated detection of resistant bacteria from soils highly polluted by heavy metals. Appl Environ Microbiol 56:1485–1491PubMedGoogle Scholar
  17. Diels L, Faelen M, Mergeay M, Nies D (1985) Mercury transposons from plasmids governing multiple resistance to heavy metals in Alcaligenes eutrophus CH34. Arch Int Physiol Biochim 93:B27–B28. doi:10.3109/13813458509080622 CrossRefGoogle Scholar
  18. Diels L, van Roy S, Somers K, Willems I, Doyen W, Mergeay M et al (1995) The use of bacteria immobilized in tubular membrane reactors for heavy metal recovery and degradation of chlorinated aromatics. J Membr Sci 100:248–258. doi:10.1016/0376-7388(94)00253-U CrossRefGoogle Scholar
  19. Don RA, Pemberton JM (1981) Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol 145:681–686PubMedGoogle Scholar
  20. Dressler C, Kües U, Nies DH, Friedrich B (1991) Determinants encoding multiple metal resistance in newly isolated copper-resistant bacteria. Appl Environ Microbiol 57:3079–3085PubMedGoogle Scholar
  21. Eberz G, Eitinger T, Friedrich B (1989) Genetic determinants of a nickel-specific transport system are part of the plasmid-encoded hydrogenase gene cluster in Alcaligenes eutrophus. J Bacteriol 171:1340–1345PubMedGoogle Scholar
  22. Eitinger T, Friedrich B (1991) Cloning, nucleotide sequence, and heterologous expression of a high-affinity nickel transport gene from Alcaligenes eutrophus. J Biol Chem 266:3222–3227PubMedGoogle Scholar
  23. Eitinger T, Suhr J, Moore L, Smith JAC (2005) Secondary transporters for nickel and cobalt ions: theme and variations. Biometals 18:399–405. doi:10.1007/s10534-005-3714-x PubMedCrossRefGoogle Scholar
  24. Fagan MJ, Saier MH Jr (1994) P-type ATPases of eukaryotes and bacteria: sequence comparisons and construction of phylogenetic trees. J Mol Evol 38:57–99. doi:10.1007/BF00175496 PubMedCrossRefGoogle Scholar
  25. Franke S, Grass G, Nies DH (2001) The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions. Microbiology 147:965–972PubMedGoogle Scholar
  26. Franke S, Grass G, Rensing C, Nies DH (2003) Molecular analysis of the copper-transporting CusCFBA efflux system from Escherichia coli. J Bacteriol 185:3804–3812. doi:10.1128/JB.185.13.3804-3812.2003 PubMedCrossRefGoogle Scholar
  27. Friedrich B, Hogrefe C, Schlegel HG (1981) Naturally occurring genetic transfer of hydrogen-oxidizing ability between strains of Alcaligenes eutrophus. J Bacteriol 147:198–205PubMedGoogle Scholar
  28. Goldberg M, Pribyl T, Juhnke S, Nies DH (1999) Energetics and topology of CzcA, a cation/proton antiporter of the RND protein family. J Biol Chem 274:26065–26070. doi:10.1074/jbc.274.37.26065 PubMedCrossRefGoogle Scholar
  29. Goris J, De Vos P, Coenye T, Hoste B, Janssens D, Brim H, Diels L, Mergeay M, Kersters K, Vandamme P (2001) Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov., Ralstonia basilensis Steinle et al. 1998 emend. Int J Syst Evol Microbiol 51:1773–1782PubMedGoogle Scholar
  30. Grass G, Rensing C (2001a) CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem Biophys Res Commun 286:902–908. doi:10.1006/bbrc.2001.5474 PubMedCrossRefGoogle Scholar
  31. Grass G, Rensing C (2001b) Genes involved in copper homeostasis in Escherichia coli. J Bacteriol 183:2145–2147. doi:10.1128/JB.183.6.2145-2147.2001 PubMedCrossRefGoogle Scholar
  32. Grass G, Große C, Nies DH (2000) Regulation of the cnr cobalt/nickel resistance determinant from Ralstonia sp. CH34. J Bacteriol 182:1390–1398. doi:10.1128/JB.182.5.1390-1398.2000 PubMedCrossRefGoogle Scholar
  33. Grass G, Thakali K, Klebba PE, Thieme D, Müller A, Wildner GF et al (2004) Linkage between catecholate siderophores and the multicopper oxidase CueO in Escherichia coli. J Bacteriol 186:5826–5833. doi:10.1128/JB.186.17.5826-5833.2004 PubMedCrossRefGoogle Scholar
  34. Grass G, Fricke B, Nies DH (2005a) Control of expression of a periplasmic nickel efflux pump by periplasmic nickel concentrations. Biometals 18:437–448. doi:10.1007/s10534-005-3718-6 PubMedCrossRefGoogle Scholar
  35. Grass G, Otto M, Fricke B, Haney CJ, Rensing C, Nies DH et al (2005b) FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress. Arch Microbiol 183:9–18. doi:10.1007/s00203-004-0739-4 PubMedCrossRefGoogle Scholar
  36. Große C, Grass G, Anton A, Franke S, Navarrete Santos A, Lawley B et al (1999) Transcriptional organization of the czc heavy metal homoeostasis determinant from Alcaligenes eutrophus. J Bacteriol 181:2385–2393PubMedGoogle Scholar
  37. Große C, Anton A, Hoffmann T, Franke S, Schleuder G, Nies DH (2004) Identification of a regulatory pathway that controls the heavy metal resistance system Czc via promoter czcNp in Ralstonia metallidurans. Arch Microbiol 182:109–118PubMedCrossRefGoogle Scholar
  38. Große C, Friedrich S, Nies DH (2007) Contribution of extracytoplasmic function sigma factors to transition metal homeostasis in Cupriavidus metallidurans strain CH34. J Mol Microbiol Biotechnol 12:227–240. doi:10.1159/000099644 PubMedCrossRefGoogle Scholar
  39. Grover A, Azmi W, Gadewar AV, Pattanayak D, Naik PS, Shekhawat GS et al (2006) Genotypic diversity in a localized population of Ralstonia solanacearum as revealed by random amplified polymorphic DNA markers. J Appl Microbiol 101:798–806. doi:10.1111/j.1365-2672.2006.02974.x PubMedCrossRefGoogle Scholar
  40. Grünberg K, Wawer C, Tebo BM, Schüler D (2001) A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl Environ Microbiol 67:4573–4582. doi:10.1128/AEM.67.10.4573-4582.2001 PubMedCrossRefGoogle Scholar
  41. Grünberg K, Müller E-C, Otto A, Reszka R, Linder L, Kube M et al (2004) Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 70:1040–1050. doi:10.1128/AEM.70.2.1040-1050.2004 PubMedCrossRefGoogle Scholar
  42. Guidot A, Prior P, Schoenfeld J, Carrere S, Genin S, Boucher C (2007) Genomic structure and phylogeny of the plant pathogen Ralstonia solanacearum inferred from gene distribution analysis. J Bacteriol 189:377–387. doi:10.1128/JB.00999-06 PubMedCrossRefGoogle Scholar
  43. Hattori M, Tanaka Y, Fukai S, Ishitani R, Nureki O (2007) Crystal structure of the MgtE Mg2+ transporter. Nature 448:1072–1076. doi:10.1038/nature06093 PubMedCrossRefGoogle Scholar
  44. Helbig K, Bleuel C, Krauss GJ, Nies DH (2008) Glutathione and transition metal homeostasis in Escherichia coli. J Bacteriol 190:5431–5438. doi:10.1128/JB.00271-08 PubMedCrossRefGoogle Scholar
  45. Higgins MK, Bokma E, Koronakis E, Hughes C, Koronakis V (2004) Structure of the periplasmic component of a bacterial drug efflux pump. Proc Natl Acad Sci USA 101:9994–9999. doi:10.1073/pnas.0400375101 PubMedCrossRefGoogle Scholar
  46. Johnson BF, Stanier RY (1971) Dissimilation of aromatic compounds by Alcaligenes eutrophus. J Bacteriol 107:468–475PubMedGoogle Scholar
  47. Juhnke S, Peitzsch N, Hübener N, Große C, Nies DH (2002) New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. Arch Microbiol 179:15–25. doi:10.1007/s00203-002-0492-5 PubMedCrossRefGoogle Scholar
  48. Koonin EV, Tatusov RL, Rudd KE (1995) Sequence similarity analysis of Escherichia coli proteins: functional and evolutionary implications. Proc Natl Acad Sci USA 92:11921–11925. doi:10.1073/pnas.92.25.11921 PubMedCrossRefGoogle Scholar
  49. Koonin EV, Tatusov RL, Rudd KE (1996) Protein sequence comparison at genome scale. Methods Enzymol 266:295–322. doi:10.1016/S0076-6879(96)66020-0 PubMedCrossRefGoogle Scholar
  50. Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C (2000) Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405:914–919. doi:10.1038/35016007 PubMedCrossRefGoogle Scholar
  51. Kunito T, Kusano T, Oyaizu H, Senoo K, Kanazawa S, Matsumoto S (1996) Cloning and sequence analysis of czc genes in Alcaligenes sp. strain CT14. Biosci Biotechnol Biochem 60:699–704PubMedCrossRefGoogle Scholar
  52. Legatzki A, Anton A, Grass G, Rensing C, Nies DH (2003a) Interplay of the Czc-system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans. J Bacteriol 185:4354–4361. doi:10.1128/JB.185.15.4354-4361.2003 PubMedCrossRefGoogle Scholar
  53. Legatzki A, Franke S, Lucke S, Hoffmann T, Anton A, Neumann D et al (2003b) First step towards a quantitative model describing Czc-mediated heavy metal resistance in Ralstonia metallidurans. Biodegradation 14:153–168. doi:10.1023/A:1024043306888 PubMedCrossRefGoogle Scholar
  54. Lengeler JW (1990) Molecular analysis of the enzyme II complexes of the bacterial phosphotransferase system (PTS) as carbohydrate transport system. Biochim Biophys Acta 1018:155–159. doi:10.1016/0005-2728(90)90238-Y CrossRefGoogle Scholar
  55. Liesegang H, Lemke K, Siddiqui RA, Schlegel H-G (1993) Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34. J Bacteriol 175:767–778PubMedGoogle Scholar
  56. Lomovskaya O, Totrov M (2005) Vacuuming the periplasm. J Bacteriol 187:1879–1883. doi:10.1128/JB.187.6.1879-1883.2005 PubMedCrossRefGoogle Scholar
  57. Lonetto MA, Brown KL, Rudd KE, Buttner MJ (1994) Analysis of the Streptomyces coelicolor sigF gene reveals the existence of a subfamily of eubacterial RNA polymerase σ factors involved in the regulation of extracytoplasmic functions. Proc Natl Acad Sci USA 91:7573–7577. doi:10.1073/pnas.91.16.7573 PubMedCrossRefGoogle Scholar
  58. Lu M, Fu D (2007) Structure of the zinc transporter YiiP. Science 317:1746–1748. doi:10.1126/science.1143748 PubMedCrossRefGoogle Scholar
  59. Lunin V, Dobrovetsky E, Khutoreskaya G, Zhang R, Joachimiak A, Doyle DA et al (2006) Crystal structure of the CorA Mg2+ transporter. Nature 440:833–837. doi:10.1038/nature04642 PubMedCrossRefGoogle Scholar
  60. Mahren S, Braun V (2003) The FecI extracytoplasmic-function sigma factor of Escherichia coli interacts with the beta′ subunit of RNA polymerase. J Bacteriol 185:1796–1802. doi:10.1128/JB.185.6.1796-1802.2003 PubMedCrossRefGoogle Scholar
  61. Marrero J, Auling G, Coto O, Nies DH (2007) High-level resistance to cobalt and nickel but probably no transenvelope efflux: metal resistance in the Cuban Serratia marcescens strain C-1. Microb Ecol 53:123–133. doi:10.1007/s00248-006-9152-7 PubMedCrossRefGoogle Scholar
  62. Mergeay M, Houba C, Gerits J (1978) Extrachromosomal inheritance controlling resistance to cadmium, cobalt and zinc ions: evidence for curing a Pseudomonas. Arch Int Physiol Biochim 86:440–441PubMedGoogle Scholar
  63. Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334PubMedGoogle Scholar
  64. Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P et al (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 27:385–410. doi:10.1016/S0168-6445(03)00045-7 PubMedCrossRefGoogle Scholar
  65. Missiakas D, Raina S (1998) The extracytoplasmic function sigma factors: role and regulation. Mol Microbiol 28:1059–1066. doi:10.1046/j.1365-2958.1998.00865.x PubMedCrossRefGoogle Scholar
  66. Monchy S, Benotmane MA, Wattiez R, van Aelst S, Auquier V, Borremans B et al (2006) Transcriptomics and proteomic analysis of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34. Microbiology 152:1765–1776. doi:10.1099/mic.0.28593-0 PubMedCrossRefGoogle Scholar
  67. Munkelt D, Grass G, Nies DH (2004) The chromosomally encoded cation diffusion facilitator proteins DmeF and FieF from Wautersia metallidurans CH34 are transporters of broad metal specificity. J Bacteriol 186:8036–8043. doi:10.1128/JB.186.23.8036-8043.2004 PubMedCrossRefGoogle Scholar
  68. Murakami S, Nakashima R, Yamashita R, Yamaguchi A (2002) Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419:587–593. doi:10.1038/nature01050 PubMedCrossRefGoogle Scholar
  69. Murakami S, Nakashima R, Yamashita E, Matsumoto T, Yamaguchi A (2006) Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443:173–179. doi:10.1038/nature05076 PubMedCrossRefGoogle Scholar
  70. Mushegian AR, Garey JR, Martin J, Liu LX (1998) Large-scale taxonomic profiling of eukaryotic model organisms: a comparison of orthologous proteins encoded by the human, fly, nematode, and yeast genomes. Genome Res 8:590–598PubMedGoogle Scholar
  71. Nies DH (1992) CzcR and CzcD, gene products affecting regulation of resistance to cobalt, zinc and cadmium (czc system) in Alcaligenes eutrophus. J Bacteriol 174:8102–8110PubMedGoogle Scholar
  72. Nies DH (1995) The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation–proton-antiporter in Escherichia coli. J Bacteriol 177:2707–2712PubMedGoogle Scholar
  73. Nies DH (1999) Microbial heavy metal resistance. Appl Microbiol Biotechnol 51:730–750. doi:10.1007/s002530051457 PubMedCrossRefGoogle Scholar
  74. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339. doi:10.1016/S0168-6445(03)00048-2 PubMedCrossRefGoogle Scholar
  75. Nies DH (2004) Incidence and function of sigma factors in Ralstonia metallidurans and other bacteria. Arch Microbiol 181:255–268. doi:10.1007/s00203-004-0658-4 PubMedCrossRefGoogle Scholar
  76. Nies DH (2007a) Bacterial transition metal homeostasis. In: Nies DH, Silver S (eds) Molecular microbiology of heavy metals. Springer-Verlag, Berlin, pp 118–142CrossRefGoogle Scholar
  77. Nies DH (2007b) How cells control zinc homeostasis. Science 317:1695–1696. doi:10.1126/science.1149048 PubMedCrossRefGoogle Scholar
  78. Nies DH, Brown N (1998) Two-component systems in the regulation of heavy metal resistance. In: Silver S, Walden W (eds) Metal ions in gene regulation. Chapman Hall, London, pp 77–103Google Scholar
  79. Nies DH, Silver S (1989) Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus. J Bacteriol 171:896–900PubMedGoogle Scholar
  80. Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199. doi:10.1007/BF01569902 PubMedCrossRefGoogle Scholar
  81. Nies D, Mergeay M, Friedrich B, Schlegel HG (1987) Cloning of plasmid genes encoding resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus CH34. J Bacteriol 169:4865–4868PubMedGoogle Scholar
  82. Nies A, Nies DH, Silver S (1989a) Cloning and expression of plasmid genes encoding resistances to chromate and cobalt in Alcaligenes eutrophus. J Bacteriol 171:5065–5070PubMedGoogle Scholar
  83. Nies DH, Nies A, Chu L, Silver S (1989b) Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proc Natl Acad Sci USA 86:7351–7355. doi:10.1073/pnas.86.19.7351 PubMedCrossRefGoogle Scholar
  84. Nies A, Nies DH, Silver S (1990) Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant from Alcaligenes eutrophus. J Biol Chem 265:5648–5653PubMedGoogle Scholar
  85. Nies DH, Koch S, Wachi S, Peitzsch N, Saier MHJ (1998) CHR, a novel family of prokaryotic proton motive force-driven transporters probably containing chromate/sulfate transporters. J Bacteriol 180:5799–5802PubMedGoogle Scholar
  86. Nies DH, Rehbein G, Hoffmann T, Baumann C, Grosse C (2006) Paralogs of genes encoding metal resistance proteins in Cupriavidus metallidurans strain CH34. J Mol Microbiol Biotechnol 11:82–93. doi:10.1159/000092820 PubMedCrossRefGoogle Scholar
  87. Paulsen IT, Saier MH Jr (1997) A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol 156:99–103. doi:10.1007/s002329900192 PubMedCrossRefGoogle Scholar
  88. Paulsen IT, Park JH, Choi PS, Saier MHJ (1997) A family of gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from gram-negative bacteria. FEMS Microbiol Lett 156:1–8PubMedGoogle Scholar
  89. Pohlmann A, Fricke WF, Reinecke F et al (2006) Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol 24:1257–1262. doi:10.1038/nbt1244 PubMedCrossRefGoogle Scholar
  90. Raymond J, Zhaxybayeva P, Gogarten JP, Gerdes SY, Blankenship RE (2002) Whole-genome analysis of photosynthetic prokaryotes. Science 298(5598):1616–1620. doi:10.1126/science.1075558 PubMedCrossRefGoogle Scholar
  91. Reizer A, Pao GM, Saier MH Jr (1991) Evolutionary relationships among the permease proteins of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Construction of phylogenetic trees and possible relatedness to proteins of eukaryotic mitochondria. J Mol Evol 33:179–193. doi:10.1007/BF02193633 PubMedCrossRefGoogle Scholar
  92. Rensing C, Pribyl T, Nies DH (1997) New functions for the three subunits of the CzcCBA cation–proton-antiporter. J Bacteriol 179:6871–6879PubMedGoogle Scholar
  93. Rensing C, Ghosh M, Rosen BP (1999) Families of soft-metal-ion-transporting ATPases. J Bacteriol 181:5891–5897PubMedGoogle Scholar
  94. Rensing C, Fan B, Sharma R, Mitra B, Rosen BP (2000) CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci USA 97:652–656. doi:10.1073/pnas.97.2.652 PubMedCrossRefGoogle Scholar
  95. Roberts SA, Weichsel A, Grass G, Thakali K, Hazzard JT, Tollin G et al (2002) Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proc Natl Acad Sci USA 99:2766–2771. doi:10.1073/pnas.052710499 PubMedCrossRefGoogle Scholar
  96. Rodionov DA, Hebbeln P, Gelfand MS, Eitinger T (2006) Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J Bacteriol 188:317–327. doi:10.1128/JB.188.1.317-327.2006 PubMedCrossRefGoogle Scholar
  97. Saier MHJ (2000) A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 64:354–411. doi:10.1128/MMBR.64.2.354-411.2000 PubMedCrossRefGoogle Scholar
  98. Saier MH (2005) Beneficial bacteria and bioremediation. J Mol Microbiol Biotechnol 9:63–64. doi:10.1159/000088836 PubMedCrossRefGoogle Scholar
  99. Saier MH Jr, Grenier FC, Lee CA, Waygood EB (1985) Evidence for the evolutionary relatedness of the proteins of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J Cell Biol 27:43–56Google Scholar
  100. Saier MH Jr, Tam R, Reizer A, Reizer J (1994) Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Mol Microbiol 11:841–847. doi:10.1111/j.1365-2958.1994.tb00362.x PubMedCrossRefGoogle Scholar
  101. Saier MHJ, Tran CV, Barabote RD (2006) TCDB: the transporter classification database for membrane transport protein analyses and information. Nucleic Acids Res 34:D181–D186. doi:10.1093/nar/gkj001 PubMedCrossRefGoogle Scholar
  102. Salanoubat M, Genin S, Artiguenave F et al (2002) Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415:497–502. doi:10.1038/415497a PubMedCrossRefGoogle Scholar
  103. Schmidt T, Schlegel HG (1994) Combined nickel–cobalt–cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. J Bacteriol 176:7045–7054PubMedGoogle Scholar
  104. Schwartz E, Henne A, Cramm R, Eitinger T, Friedrich B, Gottschalk G (2006) Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H-2-based lithoautotrophy and anaerobiosis. J Mol Biol 332:369–383. doi:10.1016/S0022-2836(03)00894-5 CrossRefGoogle Scholar
  105. Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789. doi:10.1146/annurev.micro.50.1.753 PubMedCrossRefGoogle Scholar
  106. Szpirer C, Top E, Couturier M, Mergeay M (1999) Retrotransfer or gene capture: a feature of conjugative plasmids, with ecological and evolutionary significance. Microbiology 145:3321–3329PubMedGoogle Scholar
  107. Taghavi S, Provoost A, Mergeay M, van der Lelie D (1996) Identification of a partition and replication region in the Alcaligenes eutrophus megaplasmid pMOL28. Mol Gen Genet 250:169–179PubMedGoogle Scholar
  108. Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–637. doi:10.1126/science.278.5338.631 PubMedCrossRefGoogle Scholar
  109. Tibazarwa C, Wuertz S, Mergeay M, Wyns L, van der Lelie D (2000) Regulation of the cnr cobalt and nickel resistance determinant of Ralstonia eutropha (Alcaligenes eutrophus) CH34. J Bacteriol 182:1399–1409. doi:10.1128/JB.182.5.1399-1409.2000 PubMedCrossRefGoogle Scholar
  110. Tindall BJ (2008) Rule 15 of the international code of nomenclature of bacteria: a current source of confusion. Int J Syst Evol Microbiol 58:1775–1778. doi:10.1099/ijs.0.2008/005314-0 PubMedCrossRefGoogle Scholar
  111. Tseng T-T, Gratwick KS, Kollman J, Park D, Nies DH, Goffeau A et al (1999) The RND superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1:107–125PubMedGoogle Scholar
  112. Vandamme P, Coenye T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54:2285–2289. doi:10.1099/ijs.0.63247-0 PubMedCrossRefGoogle Scholar
  113. Vandamme P, Holmes B, Coenye T, Goris , Mahenthiralingam E, LiPuma JJ, Govane JRW (2003) Burkholderia cenocepacia sp. nov.—a new twist to an old story. Res Microbiol 154:91–96. doi:10.1016/S0923-2508(03)00026-3 PubMedCrossRefGoogle Scholar
  114. van der Lelie D, Schwuchow T, Schwidetzky U, Wuertz S, Baeyens W, Mergeay M et al (1997) Two component regulatory system involved in transcriptional control of heavy metal homoeostasis in Alcaligenes eutrophus. Mol Microbiol 23:493–503. doi:10.1046/j.1365-2958.1997.d01-1866.x PubMedCrossRefGoogle Scholar
  115. von Rozycki T, Nies DH, Saier MHJ (2005) Genomic analyses of transport proteins in Ralstonia metallidurans. Comp Funct Genomics 6:17–56. doi:10.1002/cfg.454 CrossRefGoogle Scholar
  116. Zhou X, Hvorup RN, Saier MHJ (2003) An automated program to screen databases for members of protein families. J Mol Microbiol Biotechnol 5:7–10PubMedCrossRefGoogle Scholar
  117. Zoropogui A, Gambarelli S, Coves J (2008) CzcE from Cupriavidus metallidurans CH34 is a copper-binding protein. Biochem Biophys Res Commun 365:735–739. doi:10.1016/j.bbrc.2007.11.030 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Institute for Biology/Microbiology, Molecular MicrobiologyMartin-Luther University Halle-WittenbergHalleGermany

Personalised recommendations