Advertisement

Antonie van Leeuwenhoek

, Volume 94, Issue 4, pp 593–605 | Cite as

Methanosarcina as the dominant aceticlastic methanogens during mesophilic anaerobic digestion of putrescible waste

  • Vasily A. Vavilin
  • Xian Qu
  • Laurent Mazéas
  • Melanie Lemunier
  • Christian Duquennoi
  • Pinjing He
  • Theodore Bouchez
Original Paper

Abstract

Taking into account isotope 13C value a mathematical model was developed to describe the dynamics of methanogenic population during mesophilic anaerobic digestion of putrescible solid waste and waste imitating Chinese municipal solid waste. Three groups of methanogens were considered in the model including unified hydrogenotrophic methanogens and two aceticlastic methanogens Methanosaeta sp. and Methanosarcina sp. It was assumed that Methanosaeta sp. and Methanosarcina sp. are inhibited by high volatile fatty acids concentration. The total organic and inorganic carbon concentrations, methane production, methane and carbon dioxide partial pressures as well as the isotope 13C incorporation in PSW and CMSW were used for the model calibration and validation. The model showed that in spite of the high initial biomass concentration of Methanosaeta sp. Methanosarcina sp. became the dominant aceticlastic methanogens in the system. This prediction was confirmed by FISH. It is concluded that Methanosarcina sp. forming multicellular aggregates may resist to inhibition by volatile fatty acids (VFAs) because a slow diffusion rate of the acids limits the VFA concentrations inside the Methanosarcina sp. aggregates.

Keywords

Anaerobic digestion FISH Isotope 13Mathematical model Methanosarcina sp. Multicellular aggregate 

Abbreviations

FISH

Fluorescent in situ hybridization

PSW

Putrescible solid waste

CMSW

Chinese municipal solid waste

Notes

Acknowledgements

The generous support of Vasily Vavilin and Xian Qu by the CEMAGREF and the Suez-Environment is greatly appreciated.

References

  1. Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlosthatis SG, Rozzi A et al (2002) Anaerobic digestion model no. 1 (ADM1). IWA Press, Padstow: TJ International (Ltd.), 77 ppGoogle Scholar
  2. Conrad R (2005) Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and proposal. Org Geochem 36:739–752. doi: 10.1016/j.orggeochem.2004.09.006 CrossRefGoogle Scholar
  3. Dong X, Plugge CM, Stams AJM (1994) Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in coculture and triculture with different methanogens. Appl Environ Microbiol 60:2834–2838PubMedGoogle Scholar
  4. Ferry JG (ed) (1993) Methanogenesis: ecology, physiology, biochemistry & genetics. Chapman & Hill, New YorkGoogle Scholar
  5. Fey A, Chin K-J, Conrad R (2001) Thermophilic methanogens in rice field soil. Environ Microbiol 3(5):295–303. doi: 10.1046/j.1462-2920.2001.00195.x PubMedCrossRefGoogle Scholar
  6. Fukuzaki S, Nishio N, Nagai S (1990a) Kinetics of the methanogenic fermentation of acetate. Appl Environ Microbiol 56:3158–3163PubMedGoogle Scholar
  7. Fukuzaki S, Nishio N, Shobayashi M, Nagai S (1990b) Inhibition of the fermentation of propionate to methane by hydrogen, acetate and propionate. Appl Environ Microbiol 56:719–723PubMedGoogle Scholar
  8. Karakashev D, Batstone DJ, Trably E, Angelidaki I (2006) Acetate oxidation is the dominant pathway from acetate in the absence of Methanosaetaceae. Appl Environ Microbiol 72:5138–5141. doi: 10.1128/AEM.00489-06 PubMedCrossRefGoogle Scholar
  9. Kim M, Ahn Y, Speece RE (2002) Comparative process stability and efficiency of anaerobic digestion: mesophilic vs. thermophilic. Water Res 36:4369–4385. doi: 10.1016/S0043-1354(02)00147-1 PubMedCrossRefGoogle Scholar
  10. Laloui-Carpentier W, Li T, Vigneron V, Mazeas L, Bouchez T (2006) Methanogenic diversity and activity in municipal solid waste landfill leachates. Ant v Leeuwenh 89:423–434CrossRefGoogle Scholar
  11. Lokshina LY, Vavilin VA, Kettunen RH, Rintala JA, Holliger C, Nozhevnikova AN (2001) Evaluation of kinetic coefficients using integrated Monod and Haldane models for low-temperature acetoclastic methanogenesis. Water Res 35:2913–2922. doi: 10.1016/S0043-1354(00)00595-9 PubMedCrossRefGoogle Scholar
  12. McMahon KD, Stroot PG, Mackie RI, Raskin L (2001) Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions-II. Microbial population dynamics. Water Res 35:1817–1827. doi: 10.1016/S0043-1354(00)00438-3 PubMedCrossRefGoogle Scholar
  13. Nielsen HB, Angelidaki I (2008) Strategies for optimizing recovery of the biogas process following ammonia inhibition. Bioresour Technol 99. doi: 10.1016/j.biortech.2008.03.049
  14. Poels J, van Assche P, Verstraete W (1985) Influence of H2 stripping on methane production in conventional digesters. Biotechnol Bioeng 27:1692–1698. doi: 10.1002/bit.260271210 PubMedCrossRefGoogle Scholar
  15. Stams AJM (1994) Metabolic interactions between anaerobic bacteria in methanogenic environments. Ant v Leeuwenh 66:271–274CrossRefGoogle Scholar
  16. Stroot PG, McMahon KD, Mackie RI, Raskin L (2001) Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions-I. Digester performance. Water Res 35:1804–1816. doi: 10.1016/S0043-1354(00)00439-5 PubMedCrossRefGoogle Scholar
  17. ten Brummeler E (2000) Full scale experience with the BIOCEL process. Water Sci Technol 41(3):299–304PubMedGoogle Scholar
  18. Qu X, Mazeas L, Vavilin VA, Epissard J, Lemunier M, Mouchel JM, He PJ, Bouchez T Combined monitoring of changes in δ 13CH4 and archaeal community structure during mesophilic methanization of municipal solid waste. FEMS Microb Ecol (submitted)Google Scholar
  19. Vasiliev VB, Vavilin VA (1992) Substrate consumption by an activated sludge with changing bacterial size and form. Ecol Modelling 60:1–9CrossRefGoogle Scholar
  20. Vavilin VA, Angelidaki I (2005) Anaerobic degradation of solid material: importance of initiation centers for methanogenesis, mixing intensity, and 2D distributed model. Biotech Bioeng 89:113–122CrossRefGoogle Scholar
  21. Vavilin VA, Lokshina LY (1996) Modeling of volatily fatty acids degradation and evaluation of microorganism activity. Biores Technol 57:69–80CrossRefGoogle Scholar
  22. Vavilin VA, Vasiliev VB, Rytov SV (1993) Modelling organic matter destruction by microorganism association. Nauka Publishers, Moskva, 204 pp (in Russian)Google Scholar
  23. Vavilin VA, Vasiliev VB, Rytov SV, Ponomarev AV (1995) Modeling ammonia and hydrogen sulfide inhibition in anaerobic digestion. Wat Res 29:827–835CrossRefGoogle Scholar
  24. Vavilin VA, Lokshina LY, Rytov SV, Kotsurbenko OR, Nozhevnikova AN (2000) Description of two-step kinetics in methane formation during psychrophilic H2/CO2 and mesophilic glucose conversions. Biores Thechnol 71:195–209CrossRefGoogle Scholar
  25. Vavilin VA, Rytov SV, Lokshina LY, Pavlostathis SG, Barlaz MA (2003) Distributed model of solid waste anaerobic digestion. Effect of leachate recirculation and pH adjustment. Biotech Bioeng 81:66–73CrossRefGoogle Scholar
  26. Vavilin VA, Jonsson S, Ejlertsson J, Svensson BH (2006) Modelling MSW decomposition under landfill conditions considering hydrolytic and methanogenic inhibition. Biodegradation 17:389–402PubMedCrossRefGoogle Scholar
  27. Vavilin VA, Lokshina LY, Flotats X, Angelidaki I (2007) Anaerobic digestion of solid material: multidimensional modelling of continuous-flow reactor with non-uniform influent concentration distributions. Biotech Bioeng 97:354–366CrossRefGoogle Scholar
  28. Vavilin VA, Fernandez B, Jordi P, Flotats X (2008) Hydrolisis kinetics in anaerobic degradation of particulate organic material: an overview. Waste Manage 28:939–951CrossRefGoogle Scholar
  29. Vedrenne F, Beline F, Dabert P, Bernet N (2008) The effect of incubation condition on the laboratory measurement of the methane producing capacity of livestock wastes. Biores Technol 99:146–155CrossRefGoogle Scholar
  30. Vigneron V, Ponthieu M, Barina G, Audic JM, Duquennoi C, Mazeas L, Bernet N, Bouchez T (2007) Nitrate and nitrite injection during municipal solid waste anaerobic biodegradation. Waste Manage 27:778–791CrossRefGoogle Scholar
  31. Voolapalli RV, Stuckey DC (1999) Relative importance of trophic group concentrations during anaerobic degradation of volatile fatty acids. Appl Environ Microbiol 65:5009–5016PubMedGoogle Scholar
  32. Zinder SH (1993) Physiological ecology of methanogens. In: Ferry JG (ed) Methanogenesis—ecology, physiology, biochemistry & genetics. Chapman & Hill, New York, pp 128–206Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Vasily A. Vavilin
    • 1
    • 2
  • Xian Qu
    • 1
    • 3
  • Laurent Mazéas
    • 1
  • Melanie Lemunier
    • 4
  • Christian Duquennoi
    • 1
  • Pinjing He
    • 3
  • Theodore Bouchez
    • 1
  1. 1.Cemagref, UR-HBANAntony CedexFrance
  2. 2.Water Problems InstituteRussian Academy of SciencesMoscowRussian Federation
  3. 3.College of Environmental Science and EngineeringTongji-UniversityShanghaiChina
  4. 4.Suez-Env, CIRADEGargenvilleFrance

Personalised recommendations