Advertisement

Antonie van Leeuwenhoek

, Volume 94, Issue 4, pp 621–625 | Cite as

Transesterification activity of a novel lipase from Acinetobacter venetianus RAG-1

  • Erick A. Snellman
  • Rita R. Colwell
Short Communication

Abstract

Transesterification activity and the industrial potential of a novel lipase prepared from Acinetobacter ventiatus RAG-1 were evaluated. Purified lipase samples were dialyzed against pH 9.0 buffer in a single optimization step prior to lyophilization. The enzyme and organic phase were pre-equilibrated (separately) to the same thermodynamic water activities (a w) ranging from a w 0.33 to 0.97. Production of 1-octyl butyrate by lipase-catalyzed transesterification of vinyl butyrate with 1-octanol in hexane was monitored by gas chromatography. Production of 1-octyl butyrate and initial rate of reaction depended on water activity. Product synthesis and rate of transesterification increased sharply with increase from a w 0.33 to 0.55. Highest product concentration (218 mM) and rate of reaction (18.7 μmol h−1 · 10 μg protein) were measured at a w 0.86. Transesterification activity in hexane represented 32% of comparable hydrolytic activity in aqueous buffer.

Keywords

Acinetobacter venetianus RAG-1 Lipase Transesterification 

References

  1. Bell PJ, Sunna A, Gibbs MD, Curach NC, Nevalainen H, Bergquist PL (2002) Prospecting for novel lipase genes using PCR. Microbiology 148:2283–2291PubMedGoogle Scholar
  2. Bornscheuer UT (2002) Methods to increase enantioselectivity of lipases and esterases. Curr Opin Biotechnol 13:543–547. doi: 10.1016/S0958-1669(02)00350-6 PubMedCrossRefGoogle Scholar
  3. Ferrer M, Golysina O, Beloqui A, Golyshin PN (2007) Mining enzymes from extreme environments. Curr Opin Microbiol 10:207–214. doi: 10.1016/j.mib.2007.05.004 PubMedCrossRefGoogle Scholar
  4. Gupta MN, Roy I (2004) Enzymes in organic media: forms, functions, and applications. Eur J Biochem 271:2575–2583. doi: 10.1111/j.1432-1033.2004.04163.x PubMedCrossRefGoogle Scholar
  5. Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification, and biochemical properties. Appl Microbiol Biotechnol 64:763–781. doi: 10.1007/s00253-004-1568-8 PubMedCrossRefGoogle Scholar
  6. Henne A, Schmitz RA, Bömeke M, Gottschalk G, Daniel R (2000) Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl Environ Microbiol 66:3113–3116. doi: 10.1128/AEM.66.7.3113-3116.2000 PubMedCrossRefGoogle Scholar
  7. Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397. doi: 10.1016/S0958-1669(02)00341-5 PubMedCrossRefGoogle Scholar
  8. Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403. doi: 10.1016/S0167-7799(98)01195-0 PubMedCrossRefGoogle Scholar
  9. Jaeger KE, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351. doi: 10.1146/annurev.micro.53.1.315 PubMedCrossRefGoogle Scholar
  10. Kirk O, Borchert TV, Fuglsand CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351. doi: 10.1016/S0958-1669(02)00328-2 PubMedCrossRefGoogle Scholar
  11. Klibanov A (1989) Enzymatic catalysis in anhydrous organic solvents. Trends Biochem Sci 14:141–144. doi: 10.1016/0968-0004(89)90146-1 PubMedCrossRefGoogle Scholar
  12. Koops BC, Papadimou E, Verheij HM (1999) Activity and stability of chemically modified Candida antarctica lipase B absorbed on solid supports. Appl Microbiol Biotechnol 52:791–796. doi: 10.1007/s002530051593 PubMedCrossRefGoogle Scholar
  13. Lee MY, Dordick JS (2002) Enzyme activation for non-aqueous media. Curr Opin Biotechnol 13:376–384. doi: 10.1016/S0958-1669(02)00337-3 PubMedCrossRefGoogle Scholar
  14. Mustranta A, Forssell P, Poutanen K (1993) Applications of immobilized lipases to transesterification and esterification reactions in nonaqueous systems. Enzyme Microb Technol 15:133–139. doi: 10.1016/0141-0229(93)90037-3 PubMedCrossRefGoogle Scholar
  15. Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Soccol VT (1999) The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem 29:119–131PubMedGoogle Scholar
  16. Patel RN (2001) Enzymatic synthesis of chiral intermediates for drug development. Adv Synth Catal 343:527–546. doi:10.1002/1615-4169(200108)343:6/7<527::AID-ADSC527>3.0.CO;2-IGoogle Scholar
  17. Reetz MT (2004) Controlling the enantioselectivity of enzymes by directed evolution: practical and theoretical ramifications. Proc Natl Acad Sci USA 101:5716–5722. doi: 10.1073/pnas.0306866101 PubMedCrossRefGoogle Scholar
  18. Ross AC, Bell G, Halling PJ (2000) Effect of pH on rate of interfacial inactivation of serine proteases in aqueous-organic systems. Biotechnol Bioeng 67:498–503. doi:10.1002/(SICI)1097-0290(20000220)67:4<498::AID-BIT14>3.0.CO;2-MGoogle Scholar
  19. Salameh M, Wiegel J (2007) Lipases from extremophiles and potential for industrial applications. Adv Appl Microbiol 61:253–283. doi: 10.1016/S0065-2164(06)61007-1 PubMedCrossRefGoogle Scholar
  20. Schmitke JL, Wescott CR, Klibanov AM (1996) The mechanistic dissection of the plunge in enzymatic activity upon transition from water to anhydrous solvents. J Am Chem Soc 118:3360–3365. doi: 10.1021/ja9539958 CrossRefGoogle Scholar
  21. Secundo F, Spadaro S, Carrea G (1999) Optimization of Pseudomonas cepacia lipase preparations for catalysis in organic solvents. Biotechnol Bioeng 62:554–561. doi:10.1002/(SICI)1097-0290(19990305)62:5<554::AID-BIT7>3.0.CO;2-2Google Scholar
  22. Snellman EA, Colwell RR (2004) Acinetobacter lipases: molecular biology, biochemical properties and biotechnological potential. J Ind Microbiol Biotechnol 31:391–400. doi: 10.1007/s10295-004-0167-0 PubMedCrossRefGoogle Scholar
  23. Snellman EA, Sullivan ER, Colwell RR (2002) Purification and properties of the extracellular lipase, LipA, of Acinetobacter sp. RAG-1. Eur J Biochem 269:5771–5779. doi: 10.1046/j.1432-1033.2002.03235.x PubMedCrossRefGoogle Scholar
  24. Valivety RH, Halling PJ, Macrae AR (1992) Reaction rate with suspended lipase catalyst shows similar dependence of water activity in different organic solvents. Biochim Biophys Acta 1118:218–222PubMedGoogle Scholar
  25. Valivety RH, Halling PJ, Peilow AD, Macrae AR (1994) Relationship between water activity and catalytic activity of lipases in organic media. Effects of supports, loading and enzyme preparation. Eur J Biochem 222:461–466. doi: 10.1111/j.1432-1033.1994.tb18886.x PubMedCrossRefGoogle Scholar
  26. Wang Y, Lalonde JJ, Momongan M, Bergbreiter DE, Wong C (1988) Lipase-catalyzed irreversible transesterification using enol esters as acylating reagents: preparative enantio- and regioselective syntheses of alcohols, glycerol derivatives, sugars, and organometallics. J Am Chem Soc 110:7200–7205. doi: 10.1021/ja00229a041 CrossRefGoogle Scholar
  27. Zaks A, Klibanov A (1988a) The effect of water on enzyme action in organic media. J Biol Chem 263:8017–8021PubMedGoogle Scholar
  28. Zaks A, Klibanov A (1988b) Enzymatic catalysis in nonaqueous solvents. J Biol Chem 263:3194–3201PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Center of Marine BiotechnologyUniversity of Maryland Biotechnology InstituteBaltimoreUSA
  2. 2.Department of BiologyThe CitadelCharlestonUSA
  3. 3.Center of Bioinformatics and Computational BiologyInstitute for Advanced Computer Studies, University of MarylandCollege ParkUSA

Personalised recommendations