Antonie van Leeuwenhoek

, Volume 94, Issue 1, pp 35–50 | Cite as

Human gut microbiota and bifidobacteria: from composition to functionality

  • Francesca Turroni
  • Angela Ribbera
  • Elena Foroni
  • Douwe van Sinderen
  • Marco Ventura
Original Paper


The human gut is the home of an estimated 1018 bacterial cells, many of which are uncharacterized or unculturable. Novel culture-independent approaches have revealed that the majority of the human gut microbiota consists of members of the phyla Bacteroidetes and Firmicutes. Nevertheless the role of bifidobacteria in gut ecology illustrates the importance of Actinomycetes and other Actinobacteria that may be underestimated. The human gut microbiota represents an extremely complex microbial community the collective genome of which, the microbiome, encodes functions that are believed to have a significant impact on human physiology. The microbiome is assumed to significantly enhance the metabolism of amino and glycan acids, the turnover of xenobiotics, methanogenesis and the biosynthesis of vitamins. Co-colonisation of the gut commensals Bifidobacterium longum and Bacteroides thetaiotaomicron in a murine model system revealed that the presence of bifidobacteria induced an expansion in the diversity of polysaccharides targeted for degradation by Bacteroides and also induced host genes involved in innate immunity. In addition, comparative analysis of individual human gut microbiomes has revealed various strategies that the microbiota use to adapt to the intestinal environment while also pointing to the existence of a distinct infant and adult-type microbiota.


Microbiota Microbiome Genomics Bifidobacteria 



This work was financially supported by the Science Foundation Ireland under the Irish National Development Plan through a CSET award, through the Italian Award for Outstanding Young Researcher scheme “Incentivazione alla mobilita’ di studiosi stranieri e italiani residenti all’estero”, and by a Marie Curie Reintegration Grant (MERG-CT-2005-03080) to MV.


  1. Acinas SG, Klepac-Ceraj V, Hunt DE, Pharino C, Ceraj I, Distel DL, Polz MF (2004) Fine-scale phylogenetic architecture of a complex bacterial community. Nature 430:551–554PubMedCrossRefGoogle Scholar
  2. Ahmed S, Macfarlane GT, Fite A, McBain AJ, Gilbert P, Macfarlane S (2007) Mucosa-associated bacterial diversity in relation to human terminal ileum and colonic biopsy samples. Appl Environ Microbiol 73:7435–7442PubMedCrossRefGoogle Scholar
  3. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedGoogle Scholar
  4. Amann R, Snaidr J, Wagner M, Ludwig W, Schleifer KH (1996) In situ visualization of high genetic diversity in a natural microbial community. J Bacteriol 178:3496–3500PubMedGoogle Scholar
  5. Asseman C, Read S, Powrie F (2003) Colitogenic Th1 cells are present in the antigen-experienced T cell pool in normal mice: control by CD4+ regulatory T cells and IL-10. J Immunol 171:971–978PubMedGoogle Scholar
  6. Axelrood PE, Chow ML, Radomski CC, McDermott JM, Davies J (2002) Molecular characterization of bacterial diversity from British Columbia forest soils subjected to disturbance. Can J Microbiol 48:655–674PubMedCrossRefGoogle Scholar
  7. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101:15718–15723PubMedCrossRefGoogle Scholar
  8. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920PubMedCrossRefGoogle Scholar
  9. Bottari B, Ercolini D, Gatti M, Neviani E (2006) Application of FISH technology for microbiological analysis: current state and prospects. Appl Microbiol Biotechnol 73:485–494PubMedCrossRefGoogle Scholar
  10. Cobb BA, Wang Q, Tzianabos AO, Kasper DL (2004) Polysaccharide processing and presentation by the MHCII pathway. Cell 117:677–687PubMedCrossRefGoogle Scholar
  11. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JA (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826PubMedCrossRefGoogle Scholar
  12. de la cochetiere MF, Piloquet H, des Robert C, Darmaun D, Galmiche JP, Roze JC (2004) Early intestinal bacterial colonization and necrotizing enterocolitis in premature infants: the putative role of Clostridium. Pediatr Res 56:366–367CrossRefGoogle Scholar
  13. Destoumieux-Garzon D, Peduzzi J, Rebuffat S (2002) Focus on modified microcins: structural features and mechanisms of action. Biochimie 84:511–519PubMedCrossRefGoogle Scholar
  14. Dunbar J, Barns SM, Ticknor LO, Kuske CR (2002) Empirical and theoretical bacterial diversity in four Arizona soils. Appl Environ Microbiol 68:3035–3045PubMedCrossRefGoogle Scholar
  15. E’Metchnikoff (1910) The prolongation of life. Mitchell PC, traslator New York: Putnam, 343pGoogle Scholar
  16. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638PubMedCrossRefGoogle Scholar
  17. Entcheva P, Liebl W, Johann A, Hartsch T, Streit WR (2001) Direct cloning from enrichment cultures, a reliable strategy for isolation of complete operons and genes from microbial consortia. Appl Environ Microbiol 67:89–99PubMedCrossRefGoogle Scholar
  18. Eschenfeldt WH, Stols L, Rosenbaum H, Khambatta ZS, Quaite-Randall E, Wu S, Kilgore DC, Trent JD, Donnelly MI (2001) DNA from uncultured organisms as a source of 2,5-diketo-D-gluconic acid reductases. Appl Environ Microbiol 67:4206–4214PubMedCrossRefGoogle Scholar
  19. Favier CF, Vaughan EE, De Vos WM, Akkermans AD (2002) Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol 68:219–226PubMedCrossRefGoogle Scholar
  20. Franks AH, Harmsen HJ, Raangs GC, Jansen GJ, Schut F, Welling GW (1998) Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64:3336–3345PubMedGoogle Scholar
  21. Furrie E (2006) A molecular revolution in the study of intestinal microflora. Gut 55:141–143PubMedCrossRefGoogle Scholar
  22. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359PubMedCrossRefGoogle Scholar
  23. Giraud A, Radman M, Matic I, Taddei F (2001) The rise and fall of mutator bacteria. Curr Opin Microbiol 4:582–585PubMedCrossRefGoogle Scholar
  24. Gobel MA (2000) Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods 41:85–112PubMedCrossRefGoogle Scholar
  25. Gordon JI, Ley RE, Wilson R, Mardis E, Xu J, Fraser CM, Relman DA (2005) Extending our view of self: the human gut microbiome initiative (HGMI). http://wwwgenomegov/10002154
  26. Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361:512–519PubMedCrossRefGoogle Scholar
  27. Gueimonde M, Tolkko S, Korpimaki T, Salminen S (2004) New real-time quantitative PCR procedure for quantification of bifidobacteria in human fecal samples. Appl Environ Microbiol 70:4165–4169PubMedCrossRefGoogle Scholar
  28. Gueimonde M, Sakata S, Kalliomaki M, Isolauri E, Benno Y, Salminen S (2006) Effect of maternal consumption of lactobacillus GG on transfer and establishment of fecal bifidobacterial microbiota in neonates. J Pediatr Gastroenterol Nutr 42:166–170PubMedCrossRefGoogle Scholar
  29. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249PubMedCrossRefGoogle Scholar
  30. Hayashi H, Sakamoto M, Benno Y (2002) Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol 46:535–548PubMedGoogle Scholar
  31. Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118PubMedCrossRefGoogle Scholar
  32. Hopkins MJMG, Furrie E (2005) Charactersation of intestinal bacteria in infant stools using real-time PCR and northern hybridisation analyses. FEMS Microbiol Ecol 54:77–85PubMedCrossRefGoogle Scholar
  33. Hopkins MJ, Sharp R, Macfarlane GT (2001) Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut 48:198–205PubMedCrossRefGoogle Scholar
  34. Hoyles L, Inganas E, Falsen E, Drancourt M, Weiss N, McCartney AL, Collins MD (2002) Bifidobacterium scardovii sp. nov., from human sources. Int J Syst Evol Microbiol 52:995–999PubMedCrossRefGoogle Scholar
  35. Kassinen A, Krogius-Kurikka L, Makivuokko H, Rinttila T, Paulin L, Corander J, Malinen E, Apajalahti J, Palva A (2007) The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133:24–33PubMedCrossRefGoogle Scholar
  36. Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y (2005) Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl Environ Microbiol 71:541–548CrossRefGoogle Scholar
  37. Kauffmann IM, Schmitt J, Schmid RD (2004) DNA isolation from soil samples for cloning in different hosts. Appl Microbiol Biotechnol 64:665–670PubMedCrossRefGoogle Scholar
  38. Kunin V, Ouzounis CA (2003) The balance of driving forces during genome evolution in prokaryotes. Genome Res 13:1589–1594PubMedCrossRefGoogle Scholar
  39. Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A, Takami H, Morita H, Sharma VK, Srivastava TP, Taylor TD, Noguchi H, Mori H, Ogura Y, Ehrlich DS, Itoh K, Takagi T, Sakaki Y, Hayashi T, Hattori M (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14:169–181PubMedCrossRefGoogle Scholar
  40. Langendijk PS, Schut F, Jansen GJ, Raangs GC, Kamphuis GR, Wilkinson MH, Welling GW (1995) Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol 61:3069–3075PubMedGoogle Scholar
  41. Lay CSM, Rochet V, Saunier K, Dore J, Rigottier-Gois L (2005) Designed and validation of 16S rRNA probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota. Environ Microbial 7:933–946CrossRefGoogle Scholar
  42. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102:11070–11075PubMedCrossRefGoogle Scholar
  43. Ley RE, Peterson DA, Gordon JI (2006a) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848PubMedCrossRefGoogle Scholar
  44. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006b) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023PubMedCrossRefGoogle Scholar
  45. Lievin-Le Moal V, Servin AL (2006) The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin Microbiol Rev 19:315–337PubMedCrossRefGoogle Scholar
  46. Macdonald TT, Monteleone G (2005) Immunity, inflammation, and allergy in the gut. Science 307:1920–1925PubMedCrossRefGoogle Scholar
  47. Mallett AK, Rowland IR (1983) Metabolic activity and enzyme induction in rat fecal microflora maintained in continuous culture. Appl Environ Microbiol 46:591–595PubMedGoogle Scholar
  48. Marteau PR, de Vrese M, Cellier CJ, Schrezenmeir J (2001) Protection from gastrointestinal diseases with the use of probiotics. Am J Clin Nutr 73:430S-436SPubMedGoogle Scholar
  49. Martin R, Langa S, Reviriego C, Jiminez E, Marin ML, Xaus J, Fernandez L, Rodriguez JM (2003) Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr 143:754–758PubMedCrossRefGoogle Scholar
  50. Maruyama A, Sunamura M (2000) Simultaneous direct counting of total and specific microbial cells in seawater, using a deep-sea microbe as target. Appl Environ Microbiol 66:2211–2215PubMedCrossRefGoogle Scholar
  51. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118PubMedCrossRefGoogle Scholar
  52. McGarr SE, Ridlon JM, Hylemon PB (2005) Diet, anaerobic bacterial metabolism, and colon cancer: a review of the literature. J Clin Gastroenterol 39:98–109PubMedGoogle Scholar
  53. Mizoguchi A, Mizoguchi E, Saubermann LJ, Higaki K, Blumberg RS, Bhan AK (2000) Limited CD4 T-cell diversity associated with colitis in T-cell receptor alpha mutant mice requires a T helper 2 environment. Gastroenterology 119:983–995PubMedCrossRefGoogle Scholar
  54. Murphy WJ, Eizirik E, O’Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS (2001) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–2351PubMedCrossRefGoogle Scholar
  55. Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73:127–141PubMedCrossRefGoogle Scholar
  56. Nielsen DS, Moller PL, Rosenfeldt V, Paerregaard A, Michaelsen KF, Jakobsen M (2003) Case study of the distribution of mucosa-associated Bifidobacterium species, Lactobacillus species, and other lactic acid bacteria in the human colon. Appl Environ Microbiol 69:7545–7548PubMedCrossRefGoogle Scholar
  57. Ott SJ, Musfeldt M, Wenderoth DF, Hampe J, Brant O, Folsch UR, Timmis KN, Schreiber S (2004) Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53:685–693PubMedCrossRefGoogle Scholar
  58. Palmer C, Bik EM, Digiulio DB, Relman DA, Brown PO (2007) Development of the Human Infant Intestinal Microbiota. PLoS Biol 5:e177PubMedCrossRefGoogle Scholar
  59. Papineau D, Walker JJ, Mojzsis SJ, Pace NR (2005) Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl Environ Microbiol 71:4822–4832PubMedCrossRefGoogle Scholar
  60. Reysenbach AL, Giver LJ, Wickham GS, Pace NR (1992) Differential amplification of rRNA genes by polymerase chain reaction. Appl Environ Microbiol 58:3417–3418PubMedGoogle Scholar
  61. Rodriguez-Conception M, Boronat A (2002) Plant Physiol 130:1079–1089Google Scholar
  62. Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL, Gilman M, Osburne MS, Clardy J, Handelsman J, Goodman RM (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547PubMedCrossRefGoogle Scholar
  63. Saavedra JM (2001) Clinical applications of probiotic agents. Am J Clin Nutr 73:1147S–1151SPubMedGoogle Scholar
  64. Satokari (2003) Molecular approaches for the detection and identification of bifidobacteria and lactobacilli in the human gastrointestinal tract. Syst Appl Microbiol 26:572–584PubMedCrossRefGoogle Scholar
  65. Savage DC (2001) Microbial biota of the human intestine: a tribute to some pioneering scientists. Curr Issues Intest Microbiol 2:1–15PubMedGoogle Scholar
  66. Schell MA, Karmirantzou M, Snel B, other authors (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci U S A 99:14422–14427Google Scholar
  67. Schuter PJ (2000) The ecology of adaptive radiation. Oxford University Press, New YorkGoogle Scholar
  68. Sinkiewicz GNE (2005) Occurrence of Lactobacillus reuteri, lactobacilli and bifidobacteria in human breast milk. Pediatr Res 58:415CrossRefGoogle Scholar
  69. Snel B, Bork P, Huynen MA (2002) Genomes in flux: the evolution of archaeal and proteobacterial gene content. Genome Res 12:17–25PubMedCrossRefGoogle Scholar
  70. Sonnenburg JL, Angenent LT, Gordon JI (2004) Getting a grip on things: how do communities of bacterial symbionts become established in our intestine? Nat Immunol 5:569–573PubMedCrossRefGoogle Scholar
  71. Sonnenburg JL, Chen CT, Gordon JI (2006) Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLoS Biol 4:e413PubMedCrossRefGoogle Scholar
  72. Stackebrandt SP (2000) The prokaryotes: an evolving electronic resource for the microbiological community. Springer-Verlag, New York, NYGoogle Scholar
  73. Stewart JA, Vinton SC, Murray A (2005) Investigations into the influence of host genetics on the predominant eubacteria in the faecal microflora of children. J Med Microbiol 54:1239–1242PubMedCrossRefGoogle Scholar
  74. Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, Dore J (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807PubMedGoogle Scholar
  75. Suzuki K, Meek B, Doi Y, Muramatsu M, Chiba T, Honjo T, Fagarasan S (2004) Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci USA 101:1981–1986PubMedCrossRefGoogle Scholar
  76. Sydora BC, Tavernini MM, Doyle JS, Fedorak RN (2005) Association with selected bacteria does not cause enterocolitis in IL-10 gene-deficient mice despite a systemic immune response. Dig Dis Sci 50:905–913PubMedCrossRefGoogle Scholar
  77. Takada T, Matsumoto K, Nomoto K (2004) Development of multi-color FISH method for analysis of seven Bifidobacterium species in human feces. J Microbiol Methods 58:413–421PubMedCrossRefGoogle Scholar
  78. Tringe SG, Rubin EM (2005) Metagenomics: DNA sequencing of environmental samples. Nat Rev Genet 6:805–814PubMedCrossRefGoogle Scholar
  79. Ventura M, van Sinderen D, Fitzgerald GF, Zink, R (2004) Insights into the taxonomy, genetics and physiology of bifidobacteria. Antonie van Leeeuwenhoek 86:205–223CrossRefGoogle Scholar
  80. Ventura M, Canchaya C, Fitzgerald GF, Gupta RS, van Sinderen D (2007a) Genomics as a means to understand bacterial phylogeny and ecological adaptation: the case of bifidobacteria. Antonie Van Leeuwenhoek 91:351–372PubMedCrossRefGoogle Scholar
  81. Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007b) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71:495–548PubMedCrossRefGoogle Scholar
  82. Wang X, Heazlewood SP, Krause DO, Florin TH (2003) Molecular characterization of the microbial species that colonize human ileal and colonic mucosa by using 16S rDNA sequence analysis. J Appl Microbiol 95:508–520PubMedCrossRefGoogle Scholar
  83. Wang M, Ahrne S, Jeppsson B, Molin G (2005) Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol 54:219–231PubMedCrossRefGoogle Scholar
  84. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583PubMedCrossRefGoogle Scholar
  85. Wilson AC, Bush GL, Case SM, King MC (1975) Social structuring of mammalian populations and rate of chromosomal evolution. Proc Natl Acad Sci U S A 72:5061–5065PubMedCrossRefGoogle Scholar
  86. Xu J (2006) Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances. Mol Ecol 15:1713–1731PubMedCrossRefGoogle Scholar
  87. Xu J, Gordon JI (2003) Inaugural Article: Honor thy symbionts. Proc Natl Acad Sci U S A 100:10452–10459PubMedCrossRefGoogle Scholar
  88. Zoetendal EG, Akkermans AD, De Vos WM (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64:3854–3859PubMedGoogle Scholar
  89. Zoetendal EG, Ben-Amor K, Akkermans AD, Abee T, de Vos WM (2001) DNA isolation protocols affect the detection limit of PCR approaches of bacteria in samples from the human gastrointestinal tract. Syst Appl Microbiol 24:405–410PubMedCrossRefGoogle Scholar
  90. Zoetendal EG, von Wright A, Vilpponen-Salmela T, Ben-Amor K, Akkermans AD, de Vos WM (2002) Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol 68:3401–3407PubMedCrossRefGoogle Scholar
  91. Zoetendal EG, Collier CT, Koike S, Mackie RI, Gaskins HR (2004) Molecular ecological analysis of the gastrointestinal microbiota: a review. J Nutr 134:465–472PubMedGoogle Scholar
  92. Zoetendal EG, Vaughan EE, de Vos WM (2006) A microbial world within us. Mol Microbiol 59:1639–1650PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Francesca Turroni
    • 1
  • Angela Ribbera
    • 1
  • Elena Foroni
    • 1
  • Douwe van Sinderen
    • 2
  • Marco Ventura
    • 1
  1. 1.Department of GeneticsAnthropology and Evolution University of ParmaParmaItaly
  2. 2.Alimentary Pharmabiotic Centre and Department of Microbiology, Bioscience InstituteNational University of IrelandCorkIreland

Personalised recommendations