Advertisement

Antonie van Leeuwenhoek

, Volume 94, Issue 1, pp 21–33 | Cite as

Ecophysiology of the Actinobacteria in activated sludge systems

  • Robert J. Seviour
  • Caroline Kragelund
  • Yunhong Kong
  • Katherine Eales
  • Jeppe L. Nielsen
  • Per H. Nielsen
Original Paper

Abstract

This review considers what is known about the Actinobacteria in activated sludge systems, their abundance and their functional roles there. Participation in processes leading to the microbiological removal of phosphate and in the operational problems of bulking and foaming are discussed in terms of their ecophysiological traits. We consider critically whether elucidation of their nutritional requirements and other physiological properties allow us to understand better what might affect their survival capabilities in these highly competitive systems. Furthermore, how this information might allow us to improve how these processes work is discussed.

Keywords

Actinobacteria Ecophysiology FISH/microautoradiography Foaming and bulking Enhanced biological phosphorus removal 

References

  1. Acinas SG, Sarma-Rupavtarm R, Klepac-Ceraj V, Polz MF (2005) PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl Environ Microbiol 71:8966–8969PubMedCrossRefGoogle Scholar
  2. Adamczyk J, Hesselsoe M, Iversen N, Horn M, Lehner A, Nielsen PH, Schloter M, Roslev P, Wagner M (2003) The isotope array, a new tool that employs substrate-mediated labeling of rRNA for determination of microbial community structure and function. Appl Environ Microbiol 69:6875–6887PubMedCrossRefGoogle Scholar
  3. Amann R, Ludwig W (2000) Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. FEMS Microbiol Rev 24:555–565PubMedCrossRefGoogle Scholar
  4. Amann R, Ludwig W, Schleifer K H (1995) Phylogenetic identification and in-situ detection of individual microbial-cells without cultivation. Microbiol Rev 59:143–169PubMedGoogle Scholar
  5. Andreasen K, Nielsen PH (1997) Application of microautoradiography to the study of substrate uptake by filamentous microorganisms in activated sludge. Appl Environ Microbiol 63:3662–3668PubMedGoogle Scholar
  6. Andreasen K, Nielsen PH (2000) Growth of Microthrix parvicella in nutrient removal activated sludge plants: studies of in situ physiology. Water Res 34:1559–1569CrossRefGoogle Scholar
  7. Beer M, Stratton H M, Griffiths P C, Seviour R J (2006) Which are the polyphosphate accumulating organisms in full-scale activated sludge enhanced biological phosphate removal systems in Australia? J Appl Microbiol 100:233–243PubMedCrossRefGoogle Scholar
  8. Blackall LL, Seviour EM, Cunningham M, Seviour RJ, Hugenholtz P (1994) “Microthrix parvicella” is a novel, deep branching member of the actinomycetes subphylum. Syst Appl Microbiol 59:513–518Google Scholar
  9. Blackall LL, Seviour EM, Bradford D, Rossetti S, Tandoi V, Seviour RJ (2000) ‘Candidatus Nostocoida limicola’, a filamentous bacterium from activated sludge. Int J Syst Evol Microbiol 50:703–709PubMedGoogle Scholar
  10. Blackall LL, Crocetti G, Saunders AM, Bond PL (2002) A review and update of the microbiology of enhanced biological phosphorus removal in wastewater treatment plants. Ant Van Leeuwenhoek 81:681–691CrossRefGoogle Scholar
  11. Bond PL, Erhart R, Wagner M, Keller J, Blackall LL (1999) Identification of some of the major groups of bacteria in efficient and non-efficient biological phosphorous removal activated sludge systems. Appl Environ Microbiol 65:4077–4084PubMedGoogle Scholar
  12. Carr EL, Eales K, Soddell J, Seviour RJ (2005) Improved permeabilization protocols for fluorescence in situ hybridization (FISH) of mycolic-acid-containing bacteria found in foams. J Microbiol Meth 61:47–54CrossRefGoogle Scholar
  13. Carr EL, Eales KL, Seviour RJ (2006) Substrate uptake by Gordonia amarae in activated sludge foams by FISH-MAR. Water Sci Technol 54:39–45PubMedGoogle Scholar
  14. Christensson M, Blackall LL, Welander T (1998) Metabolic transformation and characterization of the sludge community in an enhanced biological phosphorus removal system. Appl Microbiol Biotechnol 99:226–234CrossRefGoogle Scholar
  15. Crocetti GR, Hugenholtz P, Bond PL, Schuler A, Keller J Jenkins D, Blackall LL (2000) Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl Environ Microbiol 66:1175–1182PubMedCrossRefGoogle Scholar
  16. Chun J, Blackall LL, Kang SO, Hah YC, Goodfellow M (1997) A proposal to reclassify Nocardia pinensis Blackall et al as Skermania piniformis gen. nov., comb. nov. Int J Syst Bacteriol 47:127–131PubMedGoogle Scholar
  17. Davenport RJ, Curtis TP, Goodfellow M, Stainsby FM, Bingley M (2000) Quantitative use of fluorescent in situ hybridization to examine relationships between mycolic acid-containing actinomycetes and foaming in activated sludge plants. Appl Environ Microbiol 66:1158–1166PubMedCrossRefGoogle Scholar
  18. de los Reyes FL, Rothauszky D, Raskin L (2002) Microbial community structures in foaming and nonfoaming full-scale wastewater treatment plants. Water Environ Res 74:437–449CrossRefGoogle Scholar
  19. Eales K, Nielsen JL, Kragelund C, Seviour R, Nielsen PH (2005) The in situ physiology of pine tree like organisms (PTLO) in activated sludge foams. Acta hydrochim hydrobiol 33:203–209CrossRefGoogle Scholar
  20. Eales KL, Nielsen JL, Seviour EM, Nielsen PH, Seviour RJ (2006) The in situ physiology of Skermania piniformis in foams in Australian activated sludge plants. Environ Microbiol 8:1712–1720PubMedCrossRefGoogle Scholar
  21. Erhart R, Bradford D, Seviour RJ, Amann RI, Blackall LL (1997) Development and use of fluorescent in situ hybridization probes for the detection and identification of “Microthrix parvicella” in activated sludge. Syst Appl Microbiol 20:310–318Google Scholar
  22. Eschenhagen M, Schuppler M, Roske I (2003) Molecular characterization of the microbial community structure in two activated sludge systems for the advanced treatment of domestic effluents. Water Res 37:3224–3232PubMedCrossRefGoogle Scholar
  23. Figuerola ELM, Erijman L (2007) Bacterial taxa abundance pattern in an industrial wastewater treatment system determined by the full rRNA cycle approach. Environ Microbiol 9:1780–1789PubMedCrossRefGoogle Scholar
  24. Frigon D, Guthrie RM, Bachman GT, Royer J, Bailey B, Raskin L (2006) Long-term analysis of a full-scale activated sludge wastewater treatment system exhibiting seasonal biological foaming. Water Res 40:990–1008PubMedCrossRefGoogle Scholar
  25. Grady CPL, Daigger GT, Lim HC (1999) Biological waste water treatment. Marcel Dekker, New YorkGoogle Scholar
  26. Hanada S, Liu WT, Shintani T, Kamagata Y, Nakamura K (2002) Tetrasphaera elongata sp nov., a polyphosphate-accumulating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 52:883–887PubMedCrossRefGoogle Scholar
  27. Hesselsoe M, Nielsen JL, Roslev P, Nielsen PH (2005) Isotope labeling and microautoradiography and active heterotrophic bacteria on the basis of assimilation of 14CO2. Appl Environ Microbiol 71:646–655PubMedCrossRefGoogle Scholar
  28. Jenkins D, Richard MG, Daigger GT (2004) Manual on the causes and control of activated sludge bulking, foaming, and other solids separation problems, 3rd edn. IWA Publishing, LondonGoogle Scholar
  29. Kawaharasaki M, Tanaka H, Kanagawa T, Nakamura K (1999) In situ identification of polyphosphate-accumulating bacteria in activated sludge by dual staining with rRNA-targeted oligonucleotide probes and 4′,6-diamidino-2-phenylindol (DAPI) at a polyphosphate-probing concentration. Water Res 33:257–265CrossRefGoogle Scholar
  30. Kong Y, Beer M, Seviour RJ, Lindrea KC, Rees GN (2001) Structure and functional analysis of the microbial community in an aerobic:anaerobic sequencing batch reactor (SBR) with no phosphorous removal. Syst Appl Microbiol 24:597–609PubMedCrossRefGoogle Scholar
  31. Kong Y, Nielsen JL, Nielsen PH (2004) Microautoradiographic study of Rhodocyclus-related polyphosphate accumulating bacteria in full-scale enhanced biological phosphorous removal plants. Appl Environ Microbiol 70:5383–5390PubMedCrossRefGoogle Scholar
  32. Kong YH, Nielsen JL, Nielsen PH (2005) Identity and ecophysiology of uncultured actinobacterial polyphosphate-accumulating organisms in full-scale enhanced biological phosphorus removal plants. Appl Environ Microbiol 71:4076–4085PubMedCrossRefGoogle Scholar
  33. Kong Y, Xia Y, Nielsen JL, Nielsen PH (2007) Structure and function of the microbial community in a full-scale enhanced biological phosphorus removal plant. Microbiology (UK) 153:4061–4073Google Scholar
  34. Kragelund C, Nielsen JL, Thomsen TR, Nielsen PH (2005) Ecophysiology of the filamentous Alphaproteobacterium Meganema perideroedes in activated sludge. FEMS Microbiol Ecol 54:111–122PubMedCrossRefGoogle Scholar
  35. Kragelund C, Kong Y, van der Waarde J, Thelen K, Eikelboom D, Tandoi V, Thomsen TR, Nielsen PH (2006) Ecophysiology of different filamentous Alphaproteobacteria species from industrial waste water treatment plants. Microbiology (UK) 152:3003–3012Google Scholar
  36. Kragelund C, Nilsson B, Eskilsson K, Bögh AM, Nielsen PH (2007a) Control of filamentous foam formers by chemical addition. In: Hahn H, Hoffmann E, Ødegaard H (eds) Proceeding of the 12th Gothenburg symposium, Ljubliana, Slovenia, May 20–23, pp 83–92Google Scholar
  37. Kragelund C, Remesova Z, Nielsen JL, Thomsen TR, Eales K, Seviour R, Wanner J, Nielsen PH (2007b) Ecophysiology of mycolic acid-containing Actinobacteria (mycolata) in activated sludge foams. FEMS Microbiol Ecol 61:174–184PubMedCrossRefGoogle Scholar
  38. Lechevalier MP, Lechevalier HA (1974) Nocardia amarae sp. nov., an actinomycete common in foaming activated sludge. Int J Syst Bacteriol 24:278–288Google Scholar
  39. Lee N, Nielsen PH, Andreasen KH, Juretschko S, Nielsen JL, Schleifer KH, Wagner M (1999) Combination of fluorescent in situ hybridization and microautoradiography—a new tool for structure–function analyses in microbial ecology. Appl Environ Microbiol 65:1289–1297PubMedGoogle Scholar
  40. Lee N, Nielsen PH, Aspegren H, Henze M, Schleifer KH, La Cour Jansen J (2003) Long-term population dynamics and in situ physiology in activated sludge systems with enhanced biological phosphorous removal operated with and without nitrogen removal. System Appl Microbiol 26:211–227CrossRefGoogle Scholar
  41. Levantesi C, Rossetti S, Thelen K, Kragelund C, Krooneman J, Eikelboom D, Nielsen PH, Tandoi V (2006) Phylogeny, physiology and distribution of ‘Candidatus Microthrix calida’, a new Microthrix species isolated from industrial activated sludge wastewater treatment plants. Environ Microbiol 8:1552–1563PubMedCrossRefGoogle Scholar
  42. Lindrea KC, Seviour RJ (2002) Activated sludge—the process. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 74–80Google Scholar
  43. Liu W-T, Nielsen AT, Wu J-H, Tsai C-S,Matsuo Y, Molin S (2001) In situ identification of polyphosphate and polyhydroxyalkanoate accumulating traits for microbial populations in a biological phosphorus removal process. Environ Microbiol 3:100–122CrossRefGoogle Scholar
  44. Loy A, Horn M, Wagner M (2003) ProbeBase—an online resource for rRNA-targeted oligonucleotide probes Nucleic. Acids Res 31:514–516CrossRefGoogle Scholar
  45. Majone M, Tandoi V (2002) Storage polymers: role in the ecology of activated sludge. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New YorkGoogle Scholar
  46. Martins AMP, Pagilla K, Heijnen JJ, van Loosdrecht MCM (2004) Filamentous bulking sludge—a critical review. Water Res 38:793–817PubMedCrossRefGoogle Scholar
  47. Maszenan AM, Seviour RJ, Patel BKC, Schumann P, Rees GN (1999) Tessaracoccus bendigoensis gen. nov., sp. nov., a gram-positive coccus occurring in regular packages or tetrads, isolated from activated sludge biomass. Int J Syst Bacteriol 49:459–468PubMedGoogle Scholar
  48. Maszenan AM, Seviour RJ, Patel BKC, Schumann P, Burghardt J, Tokiwa Y, Stratton HM (2000) Three isolates of novel polyphosphate-accumulating Gram-positive cocci, obtained from activated sludge, belong to a new genus, Tetrasphaera gen. nov., and description of two new species, Tetrasphaera japonica sp. nov. and Tetrasphaera australiensis sp. nov. Int J Syst Evol Microbiol 50:593–603PubMedGoogle Scholar
  49. McKenzie CM, Seviour EM, Schumann P, Maszenan AM, Liu JR, Webb RI , Monis P, Saint CP, Steiner U, Seviour RJ (2006) Isolates of ‘Candidatus Nostocoida limicola’ Blackall et al. 2000 should be described as three novel species of the genus Tetrasphaera, as Tetrasphaera jenkinsii sp. nov., Tetrasphaera vanveenii sp. nov. and Tetrasphaera veronensis sp. nov. Int J Syst Evol Microbiol 56:2279–2290PubMedCrossRefGoogle Scholar
  50. Nakamura K, Hiraishi A, Yoshimi Y, Kawaharasaki M, Masuda K, Kamagata Y (1995) Microlunatus phosphovorus gen. nov., sp. nov., a new gram positive polyphosphate accumulating bacterium isolated from activated sludge. Int J Syst Bacteriol 45:17–22PubMedGoogle Scholar
  51. Macnaughton SJ, O’Donnell AG, Embley TM (1994) Permeabilization of mycolic-acid-containing actinomycetes for in situ hybridization with fluorescently labelled oligonucleotide probes. Microbiology 140:2859–2865PubMedCrossRefGoogle Scholar
  52. Neufeld JD, Wagner M, Murrell JC (2007) Who eats what, where and when? Isotope-labelling experiments are coming of age. The ISME J 1:103–110CrossRefGoogle Scholar
  53. Nielsen JL, Nielsen PH (2005) Advances in microscopy: microautoradiography of single cells. In: Leadbetter JR (ed) Methods in enzymology vol 397. Academic Press, San Diego, p 237Google Scholar
  54. Nielsen JL, Mikkelsen LH, Nielsen PH (2001) In situ detection of cell surface hydrophobicity of probe-defined bacteria in activated sludge. Water Sci Technol 43:97–103PubMedGoogle Scholar
  55. Nielsen PH, Roslev P, Dueholm TE, Nielsen JL (2002) Microthrix parvicella, a specialized lipid consumer in anaerobic-aerobic activated sludge plants. Water Sci Technol 46:73–80PubMedGoogle Scholar
  56. Nielsen JL, Aquino de Muro M, Nielsen PH (2003a) Determination of viability of filamentous bacteria in activated sludge by simultaneous use of MAR, FISH and reduction of CTC. Appl Environ Microbiol 69:641–643PubMedCrossRefGoogle Scholar
  57. Nielsen JL, Christensen D, Kloppenborg M, Nielsen PH (2003b) Quantification of cell-specific substrate uptake by probe-defined bacteria under in  situ conditions by microautoradiography and fluorescence in situ hybridization. Environ Microbiol 5:202–211PubMedCrossRefGoogle Scholar
  58. Nielsen PH, Kragelund C, Nielsen JL, Tiro S, Lebek M, Rosenwinkel KH, Gessesse A (2005) Control of Microthrix parvicella in activated sludge plants by dosage of polyaluminium salts: possible mechanisms. Acta hydrochim hydrobiol 33:255–261CrossRefGoogle Scholar
  59. Oehmen A, Lemos PC, Carvalho G, Yuan Z, Keller J, Blackall LL, Reis MAM (2007) Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Res 41:2271–2300PubMedCrossRefGoogle Scholar
  60. Oerther DB, de los Reyes FL, Hernandez M, Raskin L (1999) Simultaneous oligonucleotide probe hybridization and immunostaining for in situ detection of Gordona species in activated sludge. FEMS Microbiol Ecol 29:129–136CrossRefGoogle Scholar
  61. Polaczyk A, Kinkle B, Papautsky I, Oerther DB (2006) Culture-based device to track Gordonia in activated sludge. Environ Sci Technol 40:2269–2274PubMedCrossRefGoogle Scholar
  62. Roels T, Dauwe F, Van Damme S, De Wilde K, Roelandt F (2002) The influence of PAX-14 on activated sludge systems and in particular on Microthrix parvicella. Water Sci Technol 46:487–490PubMedGoogle Scholar
  63. Roller C, Wagner M, Amann R, Ludwig W, Schleifer KH (1994) In situ probing of gram positive bacteria with high G + C content using 23S rRNA-targeted oligonucleotide probes. Microbiology (UK) 140:2849–2858CrossRefGoogle Scholar
  64. Rossetti S, Tomei MC, Nielsen PH , Tandoi V (2005) “Microthrix parvicella”, a filamentous bacterium causing bulking and foaming in activated sludge systems: a review of current knowledge. FEMS Microbiol Rev 29:49–64PubMedCrossRefGoogle Scholar
  65. Santos MM, Lemos PC, Reis MAM, Santos H (1999) Glucose metabolism and kinetics of phosphorus removal by the fermentative bacterium Microlunatus phosphovorus. Appl Environ Microbiol 65:3920–3928PubMedGoogle Scholar
  66. Seviour RJ, Blackall LL (1998) The microbiology of activated sludge. Kluwer Academic Publishers, DordrechtGoogle Scholar
  67. Seviour RJ, Maszenan AM, Soddell JA, Tandoi V, Patel BKC, Kong Y, Schumann P (2000) Microbiology of the ‘G-bacteria’ in activated sludge-minireview. Environ Microbiol 2:581–593PubMedCrossRefGoogle Scholar
  68. Seviour RJ, Liu JR, Seviour EM, McKenzie CA, Blackall LL, Saint CP (2002) The “Nostocoida limicola” story: resolving the phylogeny of this morphotype responsible for bulking in activated sludge. Water Sci Technol 46:105–110PubMedGoogle Scholar
  69. Seviour RJ, Mino T, Onuki M (2003) The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol Rev 27:99–127PubMedCrossRefGoogle Scholar
  70. Seviour EM, Eales K, Izzard L, Beer M, Carr EL, Seviour RJ (2006) The in situ physiology of “Nostocoida limicola” II, a filamentous bacterial morphotype in bulking activated sludge, using fluorescence in situ hybridization and microautoradiography. Water Sci Technol 54:47–53PubMedGoogle Scholar
  71. Snaidr J, Amann R, Huber I, Ludwig W, Schleifer KH (1997) Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63:2884–2896PubMedGoogle Scholar
  72. Snaidr J, Beimfohr C, Levantesi C, Rossetti S, van der Waarde J, Geurkink B, Eikelboom D, Lemaitre M, Tandoi V (2002) Phylogenetic analysis and in situ identification of “Nostocoida limicola”-like filamentous bacteria in activated sludge from industrial wastewater treatment plants. Water Sci Technol 46:99–104PubMedGoogle Scholar
  73. Soddell J A (2002) Activated sludge-foaming. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 1–4Google Scholar
  74. Soddell JA, Seviour RJ (1990) Microbiology of foaming in activated-sludge plants. J Appl Bacteriol 69:145–176Google Scholar
  75. Soddell JA, Seviour RJ (1998) Numerical taxonomy of Skermania piniformis and related isolates from activated sludge. J Appl Microbiol 84:272–284CrossRefGoogle Scholar
  76. Soddell JA, Seviour RJ, Blackall LL, Hugenholtz P (1998) New foam-forming nocardioforms found in activated sludge. Water Sci Technol 37:495–502CrossRefGoogle Scholar
  77. Soddell JA, Stainsby FM, Eales KL, Kroppenstedt RM, Seviour RJ, Goodfellow M (2006) Millisia brevis gen. nov., sp nov., an actinomycete isolated from activated sludge foam. Int J Syst Evol Microbiol 56:739–744PubMedCrossRefGoogle Scholar
  78. Tandoi V, Jenkins D, Wanner J (2006) Activated sludge separation problems. IWA Publishing, LondonGoogle Scholar
  79. Thomas JA, Soddell JA, Kurtboke DI (2002) Fighting foam with phages? Water Sci Technol 46:511–518PubMedGoogle Scholar
  80. van Loosdrecht MCM, Pot MA, Heijnen JJ (1997) Importance of bacterial storage polymers in bioprocesses. Water Sci Technol 35(1):41–47CrossRefGoogle Scholar
  81. Wagner AM, Cloete ET (2002) 16S rRNA sequence analysis of bacteria present in foaming activated sludge. Syst Appl Microbiol 25:434–439PubMedCrossRefGoogle Scholar
  82. Wagner M, Amann R, Lemmer H, Schleifer KH (1993) Probing activated sludge with oligonucleotides specific for Proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl Environ Microbiol 59:1520–1525PubMedGoogle Scholar
  83. Wagner M, Loy A, Nogueira R (2002) Microbial community composition and function in wastewater treatment plants. Ant van Leeuwen 81:665–680CrossRefGoogle Scholar
  84. Wagner M, Nielsen PH, Loy A (2006) Linking microbial community structure with function: fluorescence in situ hybridization-microautoradiography and isotope arrays. Curr Opin Biotechnol 17:1–9CrossRefGoogle Scholar
  85. Wanner J (2006) AS separation problems. In: Tandoi V, Jenkins D, Wanner J (eds) Activated sludge separation problems—theory, control measures, practical experience. IWA Publishing, London, p 35Google Scholar
  86. Wong MT, Mino T, Seviour RJ, Onuki M, Liu WT (2005) In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorous removal plants in Japan. Water Res 39:2901–2914PubMedCrossRefGoogle Scholar
  87. Xia Y, Kong Y, Nielsen PH (2007) In situ detection of protein-hydrolysing microorganisms in activated sludge. FEMS Microbiol Ecol 60:156–165PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Robert J. Seviour
    • 1
  • Caroline Kragelund
    • 2
  • Yunhong Kong
    • 3
  • Katherine Eales
    • 1
  • Jeppe L. Nielsen
    • 2
  • Per H. Nielsen
    • 2
  1. 1.Biotechnology Research CentreLa Trobe UniversityBendigoAustralia
  2. 2.Department of Biotechnology, Chemistry and Environmental EngineeringAalborg UniversityAalborgDenmark
  3. 3.Department of Environmental EngineeringSun Yat-Sen UniversityGuangzhouChina

Personalised recommendations