Antonie van Leeuwenhoek

, Volume 94, Issue 1, pp 99–109

Cell growth and cell division in the rod-shaped actinomycete Corynebacterium glutamicum

  • Michal Letek
  • María Fiuza
  • Efrén Ordóñez
  • Almudena F. Villadangos
  • Astrid Ramos
  • Luís M. Mateos
  • José A. Gil
Original paper

Abstract

Bacterial cell growth and cell division are highly complicated and diversified biological processes. In most rod-shaped bacteria, actin-like MreB homologues produce helicoidal structures along the cell that support elongation of the lateral cell wall. An exception to this rule is peptidoglycan synthesis in the rod-shaped actinomycete Corynebacterium glutamicum, which is MreB-independent. Instead, during cell elongation this bacterium synthesizes new cell-wall material at the cell poles whereas the lateral wall remains inert. Thus, the strategy employed by C. glutamicum to acquire a rod-shaped morphology is completely different from that of Escherichia coli or Bacillus subtilis. Cell division in C. glutamicum also differs profoundly by the apparent absence in its genome of homologues of spatial or temporal regulators of cell division, and its cell division apparatus seems to be simpler than those of other bacteria. Here we review recent advances in our knowledge of the C. glutamicum cell cycle in order to further understand this very different model of rod-shape acquisition.

Keywords

Corynebacterium Cell division Cell growth FtsZ DivIVA FtsI HMW-PBP Cell wall 

Supplementary material

ESM 1 (AVI 3959 kb)

10482_2008_9224_MOESM2_ESM.doc (19 kb)
Timelapse of C. glutamicum growing on complex medium at room temperature. The pictures were taken every 20 minutes during 12 hours (DOC 19 kb)

References

  1. Bendt AK, Burkovski A, Schaffer S, Bott M, Farwick M, HermannT (2003) Towards a phosphoproteome map of Corynebacterium glutamicum. Proteomics 3:1637–1646PubMedCrossRefGoogle Scholar
  2. Bernard CS, Sadasivam M, Shiomi D, Margolin W (2007) An altered FtsA can compensate for the loss of essential cell division protein FtsN in Escherichia coli. Mol Microbiol 64:1289–1305PubMedCrossRefGoogle Scholar
  3. Bernhardt TG, de Boer PA (2005) SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli. Mol Cell 18:555–564PubMedCrossRefGoogle Scholar
  4. Cadenas RF, Fernandez-Gonzalez C, Martin JF, Gil JA (1996) Construction of new cloning vectors for Brevibacterium lactofermentum. FEMS Microbiol Lett 137:63–68PubMedCrossRefGoogle Scholar
  5. Cadenas RF, Martin JF, Gil JA (1991) Construction and characterization of promoter-probe vectors for Corynebacteria using the kanamycin-resistance reporter gene. Gene 98:117–121PubMedCrossRefGoogle Scholar
  6. Cerdeno-Tarraga AM, Efstratiou A, Dover LG, Holden MT, Pallen M, Bentley SD et al (2003) The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res 31:6516–6523PubMedCrossRefGoogle Scholar
  7. Cha JH, Stewart GC (1997) The divIVA minicell locus of Bacillus subtilis. J Bacteriol 179:1671–1683PubMedGoogle Scholar
  8. Chami M, Bayan N, Peyret JL, Gulik-Krzywicki T, Leblon G, Shechter E (1997) The S-layer protein of Corynebacterium glutamicum is anchored to the cell wall by its C-terminal hydrophobic domain. Mol Microbiol 23:483–492PubMedCrossRefGoogle Scholar
  9. Collins MD, Cummins CS (1986) Genus Corynebacterium Lehmann and Neumann 1896, 350AL. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore, pp 1266–1276Google Scholar
  10. Collins MD, Goodfellow M, Minnikin DE (1982) Fatty acid composition of some mycolic acid-containing coryneform bacteria. J Gen Microbiol 128:2503–2509PubMedGoogle Scholar
  11. Courvalin P, Davies J (2003) Antimicrobials. Curr Opin Microbiol 6:425–529CrossRefGoogle Scholar
  12. Cure GL, Keddie RM (1973) Methods for the morphological examination of aerobic coryneform bacteria. In: Board RG, Lovelock DW (eds) Sampling—microbiological monitoring of environments. Academic Press, London, pp 123–135Google Scholar
  13. Daniel RA, Errington J (2003) Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113:767–776PubMedCrossRefGoogle Scholar
  14. Dasgupta A, Datta P, Kundu M, Basu J (2006) The serine/threonine kinase PknB of Mycobacterium tuberculosis phosphorylates PBPA, a penicillin-binding protein required for cell division. Microbiology 152:493–504PubMedCrossRefGoogle Scholar
  15. Datta P, Dasgupta A, Singh AK, Mukherjee P, Kundu M, Basu J (2006) Interaction between FtsW and penicillin-binding protein 3 (PBP3) directs PBP3 to mid-cell, controls cell septation and mediates the formation of a trimeric complex involving FtsZ, FtsW and PBP3 in mycobacteria. Mol Microbiol 62:1655–1673PubMedCrossRefGoogle Scholar
  16. de Boer PA, Crossley RE, Rothfield LI (1989) A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell 56:641–649PubMedCrossRefGoogle Scholar
  17. Dover LG, Cerdeno-Tarraga AM, Pallen MJ, Parkhill J, Besra GS (2004) Comparative cell wall core biosynthesis in the mycolated pathogens, Mycobacterium tuberculosis and Corynebacterium diphtheriae. FEMS Microbiol Rev 28:225–250PubMedCrossRefGoogle Scholar
  18. Errington J, Daniel RA, Scheffers DJ (2003) Cytokinesis in bacteria. Microbiol Mol Biol Rev 67:52–65, tablePubMedCrossRefGoogle Scholar
  19. Fadda D, Santona A, D’Ulisse V, Ghelardini P, Ennas MG, Whalen MB, Massidda O (2007) Streptococcus pneumoniae DivIVA: localization and interactions in a MinCD free context. J Bacteriol 189:1288–1298PubMedCrossRefGoogle Scholar
  20. Fernandez-Natal I, Guerra J, Alcoba M, Cachon F, Soriano F (2001) Bacteremia caused by multiply resistant Corynebacterium urealyticum: six case reports and review. Eur J Clin Microbiol Infect Dis 20:514–517PubMedCrossRefGoogle Scholar
  21. Figge RM, Divakaruni AV, Gober JW (2004) MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol Microbiol 51:1321–1332PubMedCrossRefGoogle Scholar
  22. Flardh K (2003a) Essential role of DivIVA in polar growth and morphogenesis in Streptomyces coelicolor A3(2). Mol Microbiol 49:1523–1536PubMedCrossRefGoogle Scholar
  23. Flardh K (2003b) Growth polarity and cell division in Streptomyces. Curr Opin Microbiol 6:564–571PubMedCrossRefGoogle Scholar
  24. Geissler B, Margolin W (2005) Evidence for functional overlap among multiple bacterial cell division proteins: compensating for the loss of FtsK. Mol Microbiol 58:596–612PubMedCrossRefGoogle Scholar
  25. Goehring NW, Beckwith J (2005) Diverse paths to midcell: assembly of the bacterial cell division machinery. Curr Biol 15:514–526CrossRefGoogle Scholar
  26. Goffin C, Ghuysen JM (1998) Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev 62:1079–1093PubMedGoogle Scholar
  27. Hamoen LW, Meile JC, de Jong JW, Noirot P, Errington J (2006) SepF, a novel FtsZ-interacting protein required for a late step in cell division. Mol Microbiol 59:989–999PubMedCrossRefGoogle Scholar
  28. Hansmeier N, Albersmeier A, Tauch A, Damberg T, Ros R, Anselmetti D et al (2006) The surface (S)-layer gene cspB of Corynebacterium glutamicum is transcriptionally activated by a LuxR-type regulator and located on a 6 kb genomic island absent from the type strain ATCC 13032. Microbiology 152:923–935PubMedCrossRefGoogle Scholar
  29. Henriques AO, Glaser P, Piggot PJ, Moran CP Jr (1998) Control of cell shape and elongation by the rodA gene in Bacillus subtilis. Mol Microbiol 28:235–247PubMedCrossRefGoogle Scholar
  30. Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172PubMedCrossRefGoogle Scholar
  31. Hermann T, Pfefferle W, Baumann C, Busker E, Schaffer S, Bott M et al (2001) Proteome analysis of Corynebacterium glutamicum. Electrophoresis 22:1712–1723PubMedCrossRefGoogle Scholar
  32. Hirasawa T, Wachi M, Nagai K (2000) A mutation in the Corynebacterium glutamicum ltsA gene causes susceptibility to lysozyme, temperature-sensitive growth, and L-glutamate production. J Bacteriol 182:2696–2701PubMedCrossRefGoogle Scholar
  33. Honrubia MP, Fernandez FJ, Gil JA (1998) Identification, characterization, and chromosomal organization of the ftsZ gene from Brevibacterium lactofermentum. Mol Gen Genet 259:97–104PubMedCrossRefGoogle Scholar
  34. Honrubia MP, Ramos A, Gil JA (2001) The cell division genes ftsQ and ftsZ, but not the three downstream open reading frames YFIH, ORF5 and ORF6, are essential for growth and viability in Brevibacterium lactofermentum ATCC 13869. Mol Genet Genomics 265:1022–1030PubMedCrossRefGoogle Scholar
  35. Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109PubMedCrossRefGoogle Scholar
  36. Jones LJ, Carballido-Lopez R, Errington J (2001) Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104:913–922PubMedCrossRefGoogle Scholar
  37. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A et al (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25PubMedCrossRefGoogle Scholar
  38. Kang CM, Abbott DW, Park ST, Dascher CC, Cantley LC, Husson RN (2005) The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes Dev 19:1692–1704PubMedCrossRefGoogle Scholar
  39. Kinoshita S, Udaka S, Shimono S (1957) Studies on the amino acid fermentation. Part I. Production of L-glutamic acid by various microorganisms. J Gen Appl Microbiol 3:193–205CrossRefGoogle Scholar
  40. Kobayashi M, Asai Y, Hatakeyama K, Kijima N, Wachi M, Nagai K, Yukawa H (1997) Cloning, sequencing, and characterization of the ftsZ gene from coryneform bacteria. Biochem Biophys Res Commun 236:383–388PubMedCrossRefGoogle Scholar
  41. Kruse T, Bork-Jensen J, Gerdes K (2005) The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex. Mol Microbiol 55:78–89PubMedCrossRefGoogle Scholar
  42. Letek M, Ordonez E, Fernadez-Natal I, Gil JA, Mateos LM (2006a) Identification of the emerging skin pathogen Corynebacterium amycolatum, using the essential divIVA gene as a target by PCR-amplification. FEMS Microbiol Lett 265:256–263PubMedCrossRefGoogle Scholar
  43. Letek M, Ordonez E, Fiuza M, Honrubia-Marcos MP, Vaquera J, Gil JA, Mateos LM (2007) Characterization of the promoter region of ftsZ from Corynebacterium glutamicum and controlled overexpression of FtsZ. Int Microbiol 10:271–282PubMedGoogle Scholar
  44. Letek M, Ordonez E, Vaquera J, Margolin W, Flardh K, Mateos LM, Gil JA (2008) DivIVA is required for polar growth in the MreB-lacking rod-shaped actinomycete Corynebacterium glutamicum. J Bacteriol (submitted)Google Scholar
  45. Letek M, Valbuena N, Ramos A, Ordonez E, Gil JA, Mateos LM (2006b) Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum. J Bacteriol 188:409–423PubMedCrossRefGoogle Scholar
  46. Martin JF, Santamaria RI, Sandoval H, del Real G, Mateos LM, Gil JA, Aguilar A (1987) Cloning systems in amino acid-producing corynebacteria. Bio/Technology 5:137–146CrossRefGoogle Scholar
  47. Massidda O, Anderluzzi D, Friedli L, Feger G (1998) Unconventional organization of the division and cell wall gene cluster of Streptococcus pneumoniae. Microbiology 144:3069–3078PubMedCrossRefGoogle Scholar
  48. Mateos LM, del Real G, Aguilar A, Martin JF (1987a) Cloning and expression in Escherichia coli of the homoserine kinase (thrB) gene from Brevibacterium lactofermentum. Mol Gen Genet 206:361–367PubMedCrossRefGoogle Scholar
  49. Mateos LM, del Real G, Aguilar A, Martin JF (1987b) Nucleotide sequence of the homoserine dehydrogenase (thrA) gene of Brevibacterium lactofermentum. Nucleic Acids Res 15:10598PubMedCrossRefGoogle Scholar
  50. Matsuzawa H, Asoh S, Kunai K, Muraiso K, Takasuga A, Ohta T (1989) Nucleotide sequence of the rodA gene, responsible for the rod shape of Escherichia coli: rodA and the pbpA gene, encoding penicillin-binding protein 2, constitute the rodA operon. J Bacteriol 171:558–560PubMedGoogle Scholar
  51. Mazza P, Noens EE, Schirner K, Grantcharova N, Mommaas AM, Koerten HK, Muth G, Flärdh K, van Wezel GP, Wohlleben W (2006) MreB of Streptomyces coelicolor is not essential for vegetative growth but is required for the integrity of aerial hyphae and spores. Mol Microbiol 60:838–852PubMedCrossRefGoogle Scholar
  52. Minnikin DE (1982) Lipids: complex lipids, their chemistry, biosynthesis and roles. In: Ratledge C, Stanforf J (eds) The Biology of the Mycobacteria. Academic Press, London, pp 95–184Google Scholar
  53. Mir MA, Rajeswari HS, Veeraraghavan U, Ajitkumar P (2006) Molecular characterisation of ABC transporter type FtsE and FtsX proteins of Mycobacterium tuberculosis. Arch Microbiol 185:147–158PubMedCrossRefGoogle Scholar
  54. Nguyen L, Scherr N, Gatfield J, Walburger A, Pieters J, Thompson CJ (2007) Antigen 84, an effector of pleiomorphism in Mycobacterium smegmatis. J Bacteriol 189:7896–7910PubMedCrossRefGoogle Scholar
  55. Nishio Y, Nakamura Y, Kawarabayasi Y, Usuda Y, Kimura E, Sugimoto S et al (2003) Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Res 13:1572–1579PubMedCrossRefGoogle Scholar
  56. Ohnishi J, Hayashi M, Mitsuhashi S, Ikeda M (2003) Efficient 40 degrees C fermentation of L-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding. Appl Microbiol Biotechnol 62:69–75PubMedCrossRefGoogle Scholar
  57. Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M (2002) A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant. Appl Microbiol Biotechnol 58:217–223PubMedCrossRefGoogle Scholar
  58. Peyret JL, Bayan N, Joliff G, Gulik-Krzywicki T, Mathieu L, Schechter E, Leblon G (1993) Characterization of the cspB gene encoding PS2, an ordered surface-layer protein in Corynebacterium glutamicum. Mol Microbiol 9:97–109PubMedCrossRefGoogle Scholar
  59. Pinho MG, Errington J (2004) A divIVA null mutant of Staphylococcus aureus undergoes normal cell division. FEMS Microbiol Lett 240:145–149PubMedCrossRefGoogle Scholar
  60. Polen T, Wendisch VF (2004) Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays. Appl Biochem Biotechnol 118:215–232PubMedCrossRefGoogle Scholar
  61. Puech V, Chami M, Lemassu A, Laneelle MA, Schiffler B, Gounon P et al (2001) Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 147:1365–1382PubMedGoogle Scholar
  62. Radmacher E, Alderwick LJ, Besra GS, Brown AK, Gibson KJ, Sahm H, Eggeling L (2005) Two functional FAS-I type fatty acid synthases in Corynebacterium glutamicum. Microbiology 151:2421–2427PubMedCrossRefGoogle Scholar
  63. Ramirez-Arcos S, Liao M, Marthaler S, Rigden M, Dillon JA (2005) Enterococcus faecalis divIVA: an essential gene involved in cell division, cell growth and chromosome segregation. Microbiology 151:1381–1393PubMedCrossRefGoogle Scholar
  64. Ramos A, Honrubia MP, Valbuena N, Vaquera J, Mateos LM, Gil JA (2003) Involvement of DivIVA in the morphology of the rod-shaped actinomycete Brevibacterium lactofermentum. Microbiology 149:3531–3542PubMedCrossRefGoogle Scholar
  65. Ramos A, Honrubia MP, Vega D, Ayala JA, Bouhss A, Mengin-Lecreulx D, Gil JA (2004) Characterization and chromosomal organization of the murD-murC-ftsQ region of Corynebacterium glutamicum ATCC 13869. Res Microbiol 155:174–184PubMedCrossRefGoogle Scholar
  66. Ramos A, Letek M, Campelo AB, Vaquera J, Mateos LM, Gil JA (2005) Altered morphology produced by ftsZ expression in Corynebacterium glutamicum ATCC 13869. Microbiology 151:2563–2572PubMedCrossRefGoogle Scholar
  67. Reddy M (2007) Role of FtsEX in cell division of Escherichia coli: viability of ftsEX mutants is dependent on functional SufI or high osmotic strength. J Bacteriol 189:98–108PubMedCrossRefGoogle Scholar
  68. Sall T, Mudd S, Takagi A (1958) Polyphosphate accumulation and utilization as related to synchronized cell division of Corynebacterium diphtheriae. J Bacteriol 76:640–645PubMedGoogle Scholar
  69. Santamaria RI, Gil JA, Martin JF (1985) High-frequency transformation of Brevibacterium lactofermentum protoplasts by plasmid DNA. J Bacteriol 162:463–467PubMedGoogle Scholar
  70. Santamaria RI, Gil JA, Mesas JM, Martin JF (1984) Characterization of an endogenous plasmid and development of cloning vectors and a transformation system in Brevibacterium lactofermentum. J Gen Microbiol 130:2237–2246Google Scholar
  71. Santamaria RI, Martin JF, Gil JA (1987) Identification of a promoter sequence in the plasmid pUL340 of Brevibacterium lactofermentum and construction of new cloning vectors for corynebacteria containing two selectable markers. Gene 56:199–208PubMedCrossRefGoogle Scholar
  72. Scheffers DJ, Jones LJ, Errington J (2004) Several distinct localization patterns for penicillin-binding proteins in Bacillus subtilis. Mol Microbiol 51:749–764PubMedCrossRefGoogle Scholar
  73. Scheffers DJ, Pinho MG (2005) Bacterial cell wall synthesis: new insights from localization studies. Microbiol Mol Biol Rev 69:585–607PubMedCrossRefGoogle Scholar
  74. Schmidt KL, Peterson ND, Kustusch RJ, Wissel MC, Graham B, Phillips GJ, Weiss DS (2004) A predicted ABC transporter, FtsEX, is needed for cell division in Escherichia coli. J Bacteriol 186:785–793PubMedCrossRefGoogle Scholar
  75. Stahlberg H, Kutejova E, Muchova K, Gregorini M, Lustig A, Muller SA et al (2004) Oligomeric structure of the Bacillus subtilis cell division protein DivIVA determined by transmission electron microscopy. Mol Microbiol 52:1281–1290PubMedCrossRefGoogle Scholar
  76. Tamames J, Gonzalez-Moreno M, Mingorance J, Valencia A, Vicente M (2001) Bringing gene order into bacterial shape. Trends Genet 17:124–126PubMedCrossRefGoogle Scholar
  77. Tauch A, Kaiser O, Hain T, Goesmann A, Weisshaar B, Albersmeier A et al (2005) Complete genome sequence and analysis of the multiresistant nosocomial pathogen Corynebacterium jeikeium K411, a lipid-requiring bacterium of the human skin flora. J Bacteriol 187:4671–4682PubMedCrossRefGoogle Scholar
  78. Thomaides HB, Freeman M, El Karoui M, Errington J (2001) Division site selection protein DivIVA of Bacillus subtilis has a second distinct function in chromosome segregation during sporulation. Genes Dev 15:1662–1673PubMedCrossRefGoogle Scholar
  79. Umeda A, Amako K (1983) Growth of the surface of Corynebacterium diphtheriae. Microbiol Immunol 27:663–671PubMedGoogle Scholar
  80. Valbuena N, Letek M, Ordonez E, Ayala JA, Daniel RA, Gil JA, Mateos LM (2007) Characterization of HMW-PBPs from the rod-shaped actinomycete Corynebacterium glutamicum: peptidoglycan synthesis in cells lacking actin-like cytoskeletal structures. Mol Microbiol 66:643–657PubMedCrossRefGoogle Scholar
  81. Valbuena N, Letek M, Ramos A, Ayala J, Nakunst D, Kalinowski J et al (2006) Morphological changes and proteome response of Corynebacterium glutamicum to a partial depletion of FtsI. Microbiology 152:2491–2503PubMedCrossRefGoogle Scholar
  82. Vicente M, Hodgson J, Massidda O, Tonjum T, Henriques-Normark B, Ron EZ (2006) The fallacies of hope: will we discover new antibiotics to combat pathogenic bacteria in time? FEMS Microbiol Rev 30:841–852PubMedCrossRefGoogle Scholar
  83. Wachi M, Wijayarathna CD, Teraoka H, Nagai K (1999) A murC gene from coryneform bacteria. Appl Microbiol Biotechnol 51:223–228PubMedCrossRefGoogle Scholar
  84. Wijayarathna CD, Wachi M, Nagai K (2001) Isolation of ftsI and murE genes involved in peptidoglycan synthesis from Corynebacterium glutamicum. Appl Microbiol Biotechnol 55:466–470PubMedCrossRefGoogle Scholar
  85. Wu LJ, Errington J (2004) Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell 117:915–925PubMedCrossRefGoogle Scholar
  86. Yukawa H, Omumasaba CA, Nonaka H, Kos P, Okai N, Suzuki N et al (2007) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153:1042–1058PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Michal Letek
    • 1
  • María Fiuza
    • 1
  • Efrén Ordóñez
    • 1
  • Almudena F. Villadangos
    • 1
  • Astrid Ramos
    • 1
  • Luís M. Mateos
    • 1
  • José A. Gil
    • 1
  1. 1.Departamento de Biología Molecular. Área de Microbiología. Facultad de BiologíaUniversidad de LeónLeonSpain

Personalised recommendations