Antonie van Leeuwenhoek

, Volume 93, Issue 3, pp 305–313

Streptomyces sudanensis sp. nov., a new pathogen isolated from patients with actinomycetoma

  • Erika T. Quintana
  • Katarzyna Wierzbicka
  • Pawel Mackiewicz
  • Abdalla Osman
  • Ahmed H. Fahal
  • Mohamed E. Hamid
  • Jolanta Zakrzewska-Czerwinska
  • Luis A. Maldonado
  • Michael Goodfellow
Original Paper


Nine strains isolated from mycetoma patients and received as Streptomyces somaliensis were the subject of a polyphasic taxonomic study. The organisms shared chemical markers consistent with their classification in the genus Streptomyces and formed two distinct monophyletic subclades in the Streptomyces 16S rRNA gene tree. The first subclade contained four organisms, including the type strain of S. somaliensis, and the second clade the remaining five strains which had almost identical 16S rRNA sequences. Members of the two subclades were sharply separated using DNA:DNA relatedness and phenotypic data which also showed that the subclade 1 strains formed an heterogeneous group. In contrast, the subclade 2 strains were assigned to a single genomic species and had identical phenotypic profiles. It is evident from these data that the subclade 2 strains should be recognised as a new species of Streptomyces. The name proposed for this new species is Streptomyces sudanensis sp. nov. The type strain is SD 504T (DSM = 41923T = NRRL B-24575T).


Mycetoma Polyphasic taxonomy Streptomyces 


  1. Bouchek-Mechiche K, Gardan I, Andrivon D, Normand P (2006) Streptomyces turgidiscabies and Streptomyces reticuliscabiei: one genomic species, two pathogenic groups. Int J Syst Evol Microbiol 56:2771–2776PubMedCrossRefGoogle Scholar
  2. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552PubMedGoogle Scholar
  3. Collins MD (1994) Isoprenoid quinones. In: Goodfellow M, O’Donnell AG (eds) Chemical methods in prokaryotic systematics. Academic Press Inc., London, pp 265–309Google Scholar
  4. Develoux M, Dieng MT, Ndiaye B (1999) Mycetoma of the neck and scalp in Dakar. J Mycol Med 9:179–209Google Scholar
  5. Fahal AH (2004) Mycetoma a thorn in the flesh. Trans R Soc Trop Med Hyg 98:3–11PubMedCrossRefGoogle Scholar
  6. Fahal AH (2006) Mycetoma: clinicopathological monograph. Khartoum University Press, KhartoumGoogle Scholar
  7. Fahal AH, Hasan MA (1992) Mycetoma. Br J Surg 79:1138–1141PubMedCrossRefGoogle Scholar
  8. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  9. Goodfellow M (1996) Actinomycetes: Actinomyces, Actinomadura, Nocardia, Streptomyces and related genera. In: Collee JG, Fraser AG, Marmion BP, Simmons A (eds) Mackie and McCartney practical medical microbiology. Churchill Livingstone, Edinburgh, pp 343–359Google Scholar
  10. Goodfellow M, Kumar Y, Labeda DP, Sembiring L (2007) The Streptomyces violaceusniger clade: a home for streptomycetes with rugose ornamented spores. Antonie van Leeuwenhoek 92:173–199PubMedCrossRefGoogle Scholar
  11. Gordon RE, Mihm JM (1962) Identification of Nocardia caviae (Erikson) nov. comb. Ann NY Acad Sci 98:628–636CrossRefGoogle Scholar
  12. Gumaa SA (1994) The aetiology and epidemiology of mycetoma. Sud Med J 32(suppl):14–22Google Scholar
  13. Gumaa SA, Mahgoub ES (1975) Counterimmunoelectrophoresis in the diagnosis of mycetoma and its sensitivity as compared to immunodiffusion. Sabouradia 13:309–315Google Scholar
  14. Jobb G, von Haeseler A, Strimmer K (2004) TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18PubMedCrossRefGoogle Scholar
  15. Jow H, Hudelot C, Rattray M, Higgs P (2002) Bayesian phylogenetics using an RNA substitution model applied to early mammalian evolution. Mol Biol Evol 19:1591–1601PubMedGoogle Scholar
  16. Kim SB, Falconer C, Williams E, Goodfellow M (1998) Streptomyces thermocarboxydovorans sp. nov. and Streptomyces thermocarboxydus sp. nov., two moderately thermophilic carboxydotrophic species from soil. Int J Syst Bacteriol 48:59–68PubMedCrossRefGoogle Scholar
  17. Labeda DP (1993) DNA relatedness among strains of the Streptomyces lavendulae phenetic cluster group. Int J Syst Bacteriol 43:822–825Google Scholar
  18. Labeda DP (1998) DNA relatedness among the Streptomyces fulvissimus and Streptomyces griseoviridis phenotypic cluster groups. Int J Syst Bacteriol 48: 829–832Google Scholar
  19. Labeda DP, Lyons AJ (1992) DNA relatedness among strains of the sweet potato pathogen Streptomyces ipomoea (Person and Martin 1949) Waksman and Henrici 1948. Appl Environ Microbiol 58:532–535PubMedGoogle Scholar
  20. Lanoot B, Vancanneyt M, Dawyndt P, Crockaert M, Zhang J, Huang Y, Liu Z, Swings J (2004) BOX-PCR fingerprinting as a powerful tool to reveal synonymous names in the genus Streptomyces. Emended descriptions are proposed for the species Streptomyces cinereorectus, S. fradiae, S. tricolor, S. columbiensis, S. filamentosus, S. vinaceus and S. phaeopurpureus. Syst Appl Microbiol 27:84–92PubMedCrossRefGoogle Scholar
  21. Lanoot M, Vancanneyt M, Van Schoor A, Liu Z, Swings J (2005) Reclassification of Streptomyces nigrifaciens as a later synonym of Streptomyces flavovirens; Streptomyces citreofluorescens, Streptomyces chrysomallus subsp. chrysomallus and Streptomyces fluorescens as later synonyms of Streptomyces anulatus; Streptomyces chibaensis as a later synonym of Streptomyces corchorusii; Streptomyces flaviscleroticus as a later synonym of Streptomyces minutiscleroticus; and Streptomyces lipmanii, Streptomyces griseus subsp. alpha, Streptomyces griseus subsp. cretosus and Streptomyces willmorei as later synonyms of Streptomyces microflavus. Int J Syst Evol Microbiol 55:729–731PubMedCrossRefGoogle Scholar
  22. Liu Z, Shi Y, Zhang Y, Zhou Z, Lu Z, Li W, Rodriguez C, Goodfellow M (2005) Classification of Streptomyces griseus (Krainsky 1914) Waksman and Henrici 1948 and related species and the transfer of ‘Microstreptospora cinerea’ to the genus Streptomyces as Streptomyces yanii sp. nov. Int J Syst Evol Microbiol 55:1605–1610PubMedCrossRefGoogle Scholar
  23. MacFaddin JF (1985) Media for isolation–cultivation–identification–maintenance of medical bacteria, vol 1. Williams and Wilkins, BaltimoreGoogle Scholar
  24. Mahgoub ES (1985) Mycetoma. Int J Dermatol 24:230–239CrossRefGoogle Scholar
  25. Manfio GP, Zakrzewska-Czerwinska J, Atalan E, Goodfellow M (1995) Towards minimal standards for the description of Streptomyces species. Biotechnologia 7–8:242–253Google Scholar
  26. Manfio GP, Atalan E, Zakrzewska-Czerwinska J, Mordarski M, Rodriguez C, Collins MD, Goodfellow M (2003) Classification of novel soil streptomycetes as Streptomyces aureus sp. nov., Streptomyces laceyi sp. nov. and Streptomyces sanglieri sp. nov. Antonie van Leeuwenhoek 83:245–255PubMedCrossRefGoogle Scholar
  27. Marmur J, Doty P (1962) Determination of base composition of deoxyribonucleic acid from its denaturation temperature. J Mol Biol 5:109–118PubMedGoogle Scholar
  28. McNeil MM, Brown JM (1994) The medically important aerobic actinomycetes: epidemiology and microbiology. Clin Microbiol Rev 7:357–417PubMedGoogle Scholar
  29. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M (1980) Thin-layer chromatography of methanolysates of mycolic acid containing bacteria. J Chromatogr 188:221–233CrossRefGoogle Scholar
  30. Mordarska H, Mordarski M, Goodfellow M (1972) Chemotaxonomic characters and classification of some nocardioform bacteria. J Gen Microbiol 71:77–86PubMedGoogle Scholar
  31. Mordarski M, Szyba K, Pulverer G, Goodfellow M (1976) Deoxyribonucleic acid reassociation in the classification of the ‘rhodochrous’ complex and allied taxa. J Gen Microbiol 94:235–245PubMedGoogle Scholar
  32. Posada D, Crandall KA (1998) MODELTEST testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  33. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  34. Saintpierre-Bonaccio D, Amir H, Pineau R, Lemriss S, Goodfellow M (2004) Streptomyces ferralitis sp. nov., a novel streptomycete isolated from a New-Caledonian ultramafic soil. Int J Syst Evol Microbiol 54:2061–2065PubMedCrossRefGoogle Scholar
  35. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340Google Scholar
  36. Staneck JL, Roberts GD (1974) Simplified approach to the identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231PubMedGoogle Scholar
  37. Swofford DL (1998) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  38. Taha A (1983) A serological survey of antibodies of Streptomyces somaliensis and Actinomadura madurae in Sudan using enzyme-linked immunosorbent assay (ELISA). Trans R Soc Trop Med Hyg 77:49–50PubMedCrossRefGoogle Scholar
  39. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal × windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  40. Trujillo ME, Goodfellow M (2003) Numerical phenetic classification of clinically significant aerobic sporoactinomycetes and related organisms. Antonie van Leeuwenhoek 84:39–68PubMedCrossRefGoogle Scholar
  41. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37:463–464CrossRefGoogle Scholar
  42. Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813PubMedGoogle Scholar
  43. Williams ST, Goodfellow M, Alderson G (1989) Genus Streptomyces Waksman and Henrici 1943, 339AL. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 4. Williams and Wilkins, Baltimore, pp 2452–2492Google Scholar
  44. Xu C, Wang L, Cui Q, Huang Y, Liu Z, Zhang G, Goodfellow M (2006) Neutrotolerant acidophilic Streptomyces species isolated from acidic soils in China: Streptomyces guanduensis sp. nov., Streptomyces paucisporeus sp. nov., Streptomyces rubidus sp. nov. and Streptomyces yanglinensis sp. nov. Int J Syst Evol Microbiol 56:1109–1115PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Erika T. Quintana
    • 1
    • 2
  • Katarzyna Wierzbicka
    • 3
  • Pawel Mackiewicz
    • 4
  • Abdalla Osman
    • 5
  • Ahmed H. Fahal
    • 5
  • Mohamed E. Hamid
    • 6
  • Jolanta Zakrzewska-Czerwinska
    • 3
  • Luis A. Maldonado
    • 1
    • 7
  • Michael Goodfellow
    • 1
  1. 1.School of BiologyUniversity of NewcastleNewcastle upon TyneUK
  2. 2.Instituto Politécnico Nacional (IPN), Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD)MexicoMexico
  3. 3.Ludwik Hirszfeld Institute of Immunology and Experimental TherapyPolish Academy of SciencesWroclawPoland
  4. 4.Faculty of Biotechnology, Department of GenomicsUniversity of WrocławWroclawPoland
  5. 5.Faculty of Medicine, Mycetoma Research CentreUniversity of KhartoumKhartoumSudan
  6. 6.Faculty of Veterinary Science, Department of Preventive Medicine and Public HealthUniversity of KhartoumKhartoum NorthSudan
  7. 7.Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de México (UNAM)MexicoMexico

Personalised recommendations