Antonie van Leeuwenhoek

, Volume 93, Issue 3, pp 227–239

Antibacterials as anti-inflammatory agents: Dual action agents for oral health

Review Paper

Abstract

Background Inflammatory processes with a range of specialized cells and biochemical mediators form a complex network of inter-related signal transducing pathways that relay information to preserve normal functions. Advances in molecular analyses of the information relay pathways for their constituents and principal ligands along with mechanisms utilized by the host for microbial recognition have stimulated interest in therapeutic agents with dual functionalities i.e. antibacterial and anti-inflammatory effects. Aim This review examines clinically tested agents for oral health applications with both antimicrobial and anti-inflammatory effects to include antibiotics, antimicrobials and phenolics. Results Bis-phenols such as triclosan, representing a unique dual functional therapeutic for routine oral hygiene, with its demonstrated clinical effects on inhibiting the dental plaque biofilm, reducing inflammation (gingivitis) and subsequent periodontitis is described. Cyclines, comprising another class of approved anti-inflammatory agents used at the patient level for oral health is discussed. Dual active agents in current clinical practice for systemic conditions are highlighted to summarize the clinical validity of dual function agents as an emerging therapeutic strategy. Conclusions Clinical studies demonstrate therapeutic benefits of agents with dual functionality with their effects on microorganisms and the concomitant host inflammatory response. Advances in microbial pathogenesis and resultant inflammation will facilitate progress in this emerging area poised to be a significant milestone for dental therapeutics

Keywords

Antibiotics Antimicrobial Clinical trials Cytokines Cyclines Dentifrice Gingivitis Inflammation Macrolides Phenolics Plaque Tetracycline Triclosan 

Abbreviations

FDA

Food and drug administration

IL-1

Interleukin 1

IL-γ

Interleukin 1γ

IL-1α

Interleukin 1α

IL-6

Interleukin 6

IL-8

Interleukin 8

LPS

Lipopolysaccharide

mRNA

messenger RNA

NF-κB

Nf-κB Eukaryotic transcription factor

PGE2

Prostaglandin E2

TLR2

Toll like receptor 2

TLR4

Toll like receptor 4

TNFα

Tumor necrosis factor α

References

  1. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801PubMedCrossRefGoogle Scholar
  2. Allon M (2004) Dialysis catheter-related bacteremia: treatment and prophylaxis. Am J Kidney Dis 44:779–791PubMedCrossRefGoogle Scholar
  3. Amsden GW (2005) Anti-inflammatory effects of macrolides-an underappreciated benefit in the treatment of community-acquired respiratory tract infections and chronic inflammatory pulmonary conditions? J Antimicrob Chemother 55:10–21PubMedCrossRefGoogle Scholar
  4. Bagley DM, Lin YJ (2000) Clinical evidence for the lack of triclosan accumulation from daily use in dentifrices. Am J Dent 13:148–152PubMedGoogle Scholar
  5. Barkvoll P, Rolla G (1994) Triclosan protects the skin against dermatitis caused by sodium lauryl sulphate exposure. J Clin Periodontol 21:717–719PubMedCrossRefGoogle Scholar
  6. Barkvoll P, Rolla G (1995) Triclosan reduces the clinical symptoms of the allergic patch test reaction (APR) elicited with 1% nickel sulphate in sensitised patients. J Clin Periodontol 22:485–487PubMedCrossRefGoogle Scholar
  7. Bedrosian I, Sofia RD, Wolff SM, Dinarello CA (1991) Taurolidine, an analogue of the amino acid taurine, suppresses interleukin 1 and tumor necrosis factor synthesis in human peripheral blood mononuclear cells. Cytokine. 3:568–575PubMedCrossRefGoogle Scholar
  8. Braumann C, Stuhldreier B, Bobrich E, Menenakos C, Rogalla S, Jacobi CA (2005) High doses of taurolidine inhibit advanced intraperitoneal tumor growth in rats. J Surg Res 129:129–135PubMedCrossRefGoogle Scholar
  9. Brett PM, Zygogianni P, Griffiths GS, Tomaz M, Parkar M, D’Aiuto F, Tonetti M (2005) Functional gene polymorphisms in aggressive and chronic periodontitis. J Dent Res 84:1149–1153PubMedGoogle Scholar
  10. Ciancio SG. (2007) Improving our patients’ oral health: the role of a triclosan/copolymer/fluoride dentifrice. Compend Contin Educ Dent 28:178–180, 182–183Google Scholar
  11. Ciancio SG, Golub LM, Mather ML, Bunnell H (1985) The application of a collagen stabilizer to the gingia of the beagle dog. Effect of ligature-induced periodontal disease. J Periodontol 56:148–153PubMedGoogle Scholar
  12. Close DR (2001) Matrix metalloproteinase inhibitors in rheumatic diseases. Ann Rheum Dis 60(Suppl 3):62–67Google Scholar
  13. Davies RM, Ellwood RP, Davies GM (2004) The effectiveness of a toothpaste containing triclosan and polyvinyl-methyl ether maleic acid copolymer in improving plaque control and gingival health: a systematic review. J Clin Periodontol 31:1029–1033PubMedCrossRefGoogle Scholar
  14. DeVizio W, Davies R (2004) Rationale for the daily use of a dentifrice containing triclosan in the maintenance of oral health. Compend Contin Educ Dent 25(7 Suppl 1): 54–57PubMedGoogle Scholar
  15. Dewhirst FE (1980) Structure-activity relationships for inhibition of prostaglandin cyclooxygenase by phenolic compounds. Prostaglandins 20:209–222PubMedCrossRefGoogle Scholar
  16. Dixon DR, Bainbridge BW, Darveau RP (2004) Modulation of the innate immune response within the periodontium. Periodontology 2000 35:53–74PubMedCrossRefGoogle Scholar
  17. Ezzo PJ, Cutler CW (2003) Microorganisms as risk indicators for periodontal disease. Periodontol 2000 32:24–35PubMedCrossRefGoogle Scholar
  18. Fernandes P (2006) Antibacterial discovery and development–the failure of success? Nat Biotechnol 24:1497–1503PubMedCrossRefGoogle Scholar
  19. Gaffar A, (2001) Oral care products. In: Barel AO, Paye M, Maibach HI (eds) Handbook of cosmetic science and technology, 2nd edn. Marcel Dekker, New York, pp 619–643Google Scholar
  20. German-Fattal M, Mosges R (2004) How to improve current therapeutic standards in upper respiratory infections: value of fusafungine. Curr Med Res Opinion 20:1769–1776 CrossRefGoogle Scholar
  21. Golub LM, Payne JB, Reinhardt RA, Nieman G (2006) Can systemic diseases co-induce (not just exacerbate) periodontitis? A hypothetical “two-hit” model. J Dent Res 85:102–105PubMedCrossRefGoogle Scholar
  22. Gunsolley JC (2006) A meta-analysis of six-month studies of antiplaque and antigingivitis agents. J Am Dent Assoc 137:1649–1657PubMedGoogle Scholar
  23. Hioe KP, van der Weijden GA (2005) The effectiveness of self-performed mechanical plaque control with triclosan containing dentifrices. Int J Dent Hyg 3:192–204PubMedCrossRefGoogle Scholar
  24. Ianaro A, Ialenti A, Maffia P, Sautebin L, Rombola L, Carnuccio R, Iuvone T, D’Acquisto F, Di Rosa M (2000) Anti-inflammaory activity of macrolide antibiotics. J Pharmacol Experiment Ther 292:156–163Google Scholar
  25. Jannesson L, Birkhed D, Scherl D, Gaffar A, Renvert S (2004) Effect of oxybenzone on PGE2-production in vitro and on plaque and gingivitis in vivo. J Clin Periodontol 31:91–94PubMedCrossRefGoogle Scholar
  26. Kerdvongbundit V, Wikesjo UM (2003) Effect of triclosan on healing following non-surgical periodontal therapy in smokers. J Clin Periodontol 30:1024–1030PubMedCrossRefGoogle Scholar
  27. Kinane DF, Mark Bartold P (2007) Clinical relevance of the host responses of periodontitis. Periodontology 2000 43:278–93PubMedCrossRefGoogle Scholar
  28. Kinane DF, Shiba H, Stathopoulou PG, Zhao H, Lappin DF, Singh A, Eskan MA, Beckers S, Waigel S, Alpert B, Knudsen TB (2006) Gingival epithelial cells heterozygous for Toll-like receptor 4 polymorphisms Asp299Gly and Thr399ile are hypo-responsive to Porphyromonas gingivalis. Genes Immun 7:190–200PubMedCrossRefGoogle Scholar
  29. Labro MT (2000) Interference of antibacterial agents with phagocyte functions: immunomodulation or “immuno-fairy tales”? Clin Microbiol Rev 13:615–650PubMedCrossRefGoogle Scholar
  30. Labro MT (2005) Anti-inflammatory activity of ansamycins. Expert Rev Anti Infect Ther 3:91–103PubMedCrossRefGoogle Scholar
  31. Leyden JJ (2003) A review of the use of combination therapies for the treatment of acne vulgaris. J Am Acad Dermatol 49(3 Suppl):S200–S210PubMedCrossRefGoogle Scholar
  32. Lin YJ, Fung KK, Kong BM, DeSalva SJ (1994) Gingival absorption of triclosan following topical mouthrinse application. Am J of Dent 7:13–16Google Scholar
  33. Lindhe J, Hamp S, Löe H (1973) Experimental periodontitis in the beagle dog. J Periodontol Res 8:1–10CrossRefGoogle Scholar
  34. Löe H, Theilade E, Jensen SB (1965) Experimental gingivitis in man. J Clin Periodontol 36:177–187Google Scholar
  35. Mai V, Morris JG Jr (2004) Colonic bacterial flora: changing understandings in the molecular age. J Nutr 134:459–464PubMedGoogle Scholar
  36. Monack DM, Mueller A, Falkow S (2004) Persistent bacterial infections: the interface of the pathogen and the host immune system. Nat Rev Microbiol 2:747–765PubMedCrossRefGoogle Scholar
  37. Modeer T, Bengtsson A, Rolla G (1996) Triclosan reduces prostaglandin biosynthesis in human gingival fibroblasts challenged with interleukin-1 in vitro. J Clin Periodontol 23:927–933PubMedCrossRefGoogle Scholar
  38. Mori Y, Yoshimura A, Ukai T, Lien E, Espevik T, Hara Y (2003) Immunohistochemical localization of Toll-like receptors 2 and 4 in gingival tissue from patients with periodontitis. Oral Microbiol Immunol 18:54–58 PubMedCrossRefGoogle Scholar
  39. Mustafa M, Bakhiet M, Wondimu B, Modeer T (2000) Effect of triclosan on interferon-gamma production and major histocompatibility complex class II expression in human gingival fibroblasts. J Clin Periodontol 27:733–737PubMedCrossRefGoogle Scholar
  40. Mustafa M, Wondimu B, Yucel-Lindberg T, Kats-Hallstrom AT, Jonsson AS, Modeer T (2005) Triclosan reduces microsomal prostaglandin E synthase-1 expression in human gingival fibroblasts. J Clin Periodontol 32:6–11PubMedCrossRefGoogle Scholar
  41. Muthukuru M, Jotwani R, Cutler CW (2005) Oral mucosal endotoxin tolerance induction in chronic periodontitis. Infect Immun 73:687–694PubMedCrossRefGoogle Scholar
  42. Nathan C (2002) Points of control in inflammation. Nature 420:846–852PubMedCrossRefGoogle Scholar
  43. Oguz H, Oguz E, Karadede S (2000) Effect of taurolidine on the normal eyelid and conjunctival flora. Curr Eye Res 21:851–855PubMedCrossRefGoogle Scholar
  44. Oliver RC, Brown LJ, Löe H (1998) Periodontal diseases in the United States population. J Periodontol 69:269–278PubMedGoogle Scholar
  45. Palazzi C, Olivieri I, D’Amico E, Pennese E, Petricca A (2004) Management of reactive arthritis. Exp Opin Pharmacother 5:61–70CrossRefGoogle Scholar
  46. Paraskevas S (2005) Randomized controlled clinical trials on agents used for chemical plaque control. Int J Dent Hyg 3:162–178PubMedCrossRefGoogle Scholar
  47. Peterson JT (2004) Matrix metalloproteinase inhibitor development and the remodeling of drug discovery. Heart Failure Rev 9:63–79CrossRefGoogle Scholar
  48. Ramberg P, Furuichi Y, Sherl D, Volpe AR, Nabi N, Gaffar A, Lindhe J (1995) The effect of triclosan on developing gingivitis. J Clin Periodontol 22:442–448 PubMedCrossRefGoogle Scholar
  49. Reynolds S, Moran J, Wade WG, Addy M, Newcombe R (1991) Taurolin as an oral rinse. II. Effects on in vitro and in vivo plaque regrowth. Clin Prevent Dent 13:18–22Google Scholar
  50. Rokita JR, Hazen SP, Millen D, Volpe AR (1975) An in vivo study of an antimicrobial mouth rinse on supragingival and subgingival plaque and calculus formation. Pharmacol Ther Dentist 2:1–11Google Scholar
  51. Rosling B, Dahlen G, Volpe A, Furuichi Y, Ramberg P, Lindhe J (1997) The use of a triclosan/copolymer dentifrice may retard the progression of periodontitis. J Clin Periodontol 24:873–880PubMedCrossRefGoogle Scholar
  52. Sahingur SE, Cohen RE (2004) Analysis of host responses and risk for disease progression. Periodontol 2000 34:57–83PubMedCrossRefGoogle Scholar
  53. Sapadin AN, Fleischmajer R (2006) Tetracyclines: nonantibiotic properties and their clinical implications. J Am Acad Dermatol 54:258–265PubMedCrossRefGoogle Scholar
  54. Schroder NW, Schumann RR (2005) Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect Dis 5:156–164PubMedGoogle Scholar
  55. Schroder NW, Meister D, Wolff V, Christan C, Kaner D, Haban V, Purucker P, Hermann C, Moter A, Gobel UB, Schumann RR (2005) Chronic periodontal disease is associated with single-nucleotide polymorphisms of the human TLR-4 gene. Genes Immun and Immunity 6:448–451CrossRefGoogle Scholar
  56. Schuller-Levis GB, Park E (2003) Taurine: new implications for an old amino acid. FEMS Microbiol Lett 226:195–202PubMedCrossRefGoogle Scholar
  57. Sekino S, Ramberg P (2005) The effect of a mouth rinse containing phenolic compounds on plaque formation and developing gingivitis. J Clin Periodontol 32:1083–1088PubMedCrossRefGoogle Scholar
  58. Shapiro S, Guggenheim B (1998) Inhibition of oral bacteria by phenolic compounds. Part I. QSAR analysis using molecular connectivity. Quant Struct Activity Relationships 17:327–337CrossRefGoogle Scholar
  59. Skaare A, Eide G, Herlofson B, Barkvoll P (1996) The effect of toothpaste containing triclosan on oral mucosal desquamation. A model study. J Clin Periodontol 23:1100–1103PubMedCrossRefGoogle Scholar
  60. Skaare AB, Kjaerheim V, Barkvoll P, Rolla G (1997) Does the nature of the solvent affect the anti-inflammatory capacity of triclosan? An experimental study. J Clin Periodontol 24:124–128PubMedCrossRefGoogle Scholar
  61. Skidmore R, Kovach R, Walker C, Thomas J, Bradshaw M, Leyden J, Powala C, Ashley R (2003) Effects of subantimicrobial-dose doxycycline in the treatment of moderate acne. Arch Dermatol 139:459–464PubMedCrossRefGoogle Scholar
  62. Socransky SS, Haffajee AD (2002) Dental biofilms: difficult therapeutic targets. Periodontology 2000 28:12–55PubMedCrossRefGoogle Scholar
  63. Tlaskalova-Hogenova H, Stepankova R, Hudcovic T, Tuckova L, Cukrowska B, Lodinova-Zadnikova R, Kozakova H, Rossmann P, Bartova J, Sokol D, Funda DP, Borovska D, Rehakova Z, Sinkora J, Hofman J, Drastich P, Kokesova A (2004) Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett 93:97–108PubMedCrossRefGoogle Scholar
  64. U.S. Department of Health and Human Services (2000) Oral health in America: A report of the Surgeon-Genera. U.S. Department of Health and Human Services, National Institute of Dental and Craniofacial Research, National Institutes of Health, Rockville, MDGoogle Scholar
  65. Volpe AR, Petrone ME, De Vizio W, Davies RM, Proskin HM (1996) A review of plaque, gingivitis, calculus and caries clinical efficacy studies with a fluoride dentifrice containing triclosan and PVM/MA copolymer. J Clin Dent 7(Suppl):S1–S14PubMedGoogle Scholar
  66. Waaler SM, Rolla G, Skjorland KK, Ogaard B (1993) Effects of oral rinsing with triclosan and sodium lauryl sulfate on dental plaque formation: a pilot study. Scand J Dent Res 101:192–195PubMedGoogle Scholar
  67. Wang PL, Ohura K, Fujii T, Oido-Mori M, Kowashi Y, Kikuchi M, Suetsugu Y, Tanaka J (2003) DNA microarray analysis of human gingival fibroblasts from healthy and inflammatory gingival tissues. Biochem Biophys Res Comm 305:970–973PubMedCrossRefGoogle Scholar
  68. Ulevitch RJ (2004) Therapeutics targeting the innate immune system. Nat Rev Immunol 4:512–520PubMedCrossRefGoogle Scholar
  69. Zimmermann M, Preac-Mursic V (1992) In vitro activity of taurolidine, chlorophenol-camphor-menthol and chlorhexidine against oral pathogenic microorganisms. Arzneimittelforschung 42:1157–1159PubMedGoogle Scholar
  70. Zoetendal EG, Collier CT, Koike S, Mackie RI, Gaskins HR (2004) Molecular ecological analysis of the gastrointestinal microbiota: a review. J Nutr 134:465–472PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Colgate-Palmolive CompanyPiscatawayUSA
  2. 2.PrincetonUSA

Personalised recommendations