Antonie van Leeuwenhoek

, Volume 92, Issue 4, pp 429–441 | Cite as

Identification of disulfide reductases in Campylobacterales: a bioinformatics investigation

  • Nadeem O. Kaakoush
  • Torsten Sterzenbach
  • William G. Miller
  • Sebastian Suerbaum
  • George Louis Mendz
Original Paper

Abstract

Disulfide reductases of host-colonising bacteria are involved in the expression of virulence factors, resistance to drugs, and elimination of toxic compounds. Large-scale genome analyses of 281 prokaryotes identified CXXC and CXXC-derived motifs in each microorganism. The total number of these motifs showed correlations with genome size and oxygen tolerance of the prokaryotes. Specific bioinformatic analyses served to identify putative disulfide reductases in the Campylobacterales Campylobacter jejuni, Helicobacter pylori, Wolinella succinogenes and Arcobacter butzleri which colonise the gastrointestinal tract of higher animals. Three filters applied to the genomes of these species yielded 35, 25, 28 and 34 genes, respectively, encoding proteins with the characteristics of disulfide reductases. Ten proteins were common to the four species, including four belonging to the thioredoxin system. The presence of thioredoxin reductase activities was detected in the four bacterial species by observing dithiobis-2-nitrobenzoic acid reduction with β-nicotinamide adenine dinucleotide phosphate as cofactor. Phylogenetic analyses of the thioredoxin reductases TrxB1 and TrxB2 of the four Campylobacterales were performed. Their TrxB1 proteins were more closely related to those of Firmicutes than to the corresponding proteins of other Proteobacteria. The Campylobacterales TrxB2 proteins were closer to glutathione reductases of other organisms than to their respective TrxB1 proteins. The phylogenetic features of the Campylobacterales thioredoxin reductases suggested a special role for these enzymes in the physiology of these bacteria.

Keywords

Campylobacterales Disulfide reductase Genome analyses Phylogeny 

Notes

Acknowledgements

This work was made possible by the support of the Australian Research Council and by grants SFB621/B8 from the Deutsche Forschungsgemeinschaft and PTJ-BIO 031U213B from the BMBF Competence Center PathoGenoMik.

Supplementary material

10482_2007_9171_MOESM1_ESM.pdf (62 kb)
ESM1 (PDF 62 kb)

References

  1. Alarcon T, Domingo D, Lopez-Brea M (1999) Antibiotic resistance problems with Helicobacter pylori. Int J Antimicrob Agents 12:19–26PubMedCrossRefGoogle Scholar
  2. Baar C, Eppinger M, Raddatz G et al (2003) Complete genome sequence and analysis of Wolinella succinogenes. Proc Natl Acad Sci USA 100:11690–11695PubMedCrossRefGoogle Scholar
  3. Bohr UR, Segal I, Primus A, Wex T, Hassan H, Ally R, Malfertheiner P (2003) Detection of a putative novel Wolinella species in patients with squamous cell carcinoma of the esophagus. Helicobacter 8:608–612PubMedCrossRefGoogle Scholar
  4. Chivers PT, Prehoda KE, Raines RT (1997) The CXXC motif: a rheostat in the active site. Biochemistry 36:4061–4066PubMedCrossRefGoogle Scholar
  5. Davioud-Charvet E, McLeish MJ, Veine DM et al (2003) Mechanism-based inactivation of thioredoxin reductase from Plasmodium falciparum by Mannich bases. Implication for cytotoxicity. Biochemistry 42:13319–13330PubMedCrossRefGoogle Scholar
  6. Donachie SP, Bowman JP, On SL, Alam M (2005) Arcobacter halophilus sp. nov., the first obligate halophile in the genus Arcobacter. Int J Syst Evol Microbiol 55:1271–1277PubMedCrossRefGoogle Scholar
  7. Ellis WA, Neill SD, O’Brien JJ, Ferguson HW, Hanna J (1977) Isolation of Spirillum/Vibrio-like organisms from bovine fetuses. Vet Res 100:451–452Google Scholar
  8. Felsenstein J (1989) PHYLIP – phylogeny inference package (version 3.2). Cladistics 5:164–166Google Scholar
  9. Fomenko DE, Gladyshev VN (2003) Identity and functions of CXXC-derived motifs. Biochemistry 42:11214–11225PubMedCrossRefGoogle Scholar
  10. Fox JG (2002) The non-H pylori helicobacters: their expanding role in gastrointestinal and systemic diseases. Gut 50:273–283PubMedCrossRefGoogle Scholar
  11. Galperin MY (2005) A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol 5:35–54PubMedCrossRefGoogle Scholar
  12. Hayashi S, Abe M, Kimoto M, Furukawa S, Nakazawa T (2000) The dsbA-dsbB disulfide bond formation system of Burkholderia cepacia is involved in the production of protease and alkaline phosphatase, motility, metal resistance, and multi-drug resistance. Microbiol Immunol 44:41–50PubMedGoogle Scholar
  13. Hsueh PR, Teng LJ, Yang PC, Wang SK, Chang SC, Ho SW, Hsieh WC, Luh KT (1997) Bacteremia caused by Arcobacter cryaerophilus 1B. J Clin Microbiol 35:489–491PubMedGoogle Scholar
  14. Kaakoush NO, Mendz GL (2005) Helicobacter pylori disulphide reductases: role in metronidazole reduction. FEMS Immunol Med Microbiol 44:137–142PubMedCrossRefGoogle Scholar
  15. Kiehlbauch JA, Brenner DJ, Nicholson MA, Baker CN, Patton CM, Steigerwalt AG, Wachsmuth IK (1991) Campylobacter butzleri sp. nov. isolated from humans and animals with diarrheal illness. J Clin Microbiol 29:376–385PubMedGoogle Scholar
  16. Kortemme T, Creighton TE (1995) Ionisation of cysteine residues at the termini of model α-helical peptides. Relevance to unusual thiol pK a values in proteins of the thioredoxin family. J Mol Biol 253:799–812PubMedCrossRefGoogle Scholar
  17. Lane DJ, Harrison AP, Stahl D, Pace B, Giovannoni SJ, Olsen GJ, Pace NR (1992) Evolutionary relationships among sulfur- and iron-oxidizing Eubacteria. J Bacteriol 174:269–278PubMedGoogle Scholar
  18. Leong JM, Morrissey PE, Isberg RR (1993) A 76-amino acid disulfide loop in the Yersinia pseudotuberculosis invasin protein is required for integrin receptor recognition. J Biol Chem 268:20524–20532PubMedGoogle Scholar
  19. Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P (2004) SMART 4.0: towards genomic data integration. Nucleic Acids Res 32:D142-D144PubMedCrossRefGoogle Scholar
  20. Major TA, Burd H, Whitman WB (2004) Abundance of 4Fe–4S motifs in the genomes of methanogens and other prokaryotes. FEMS Microbiol Lett 239:117–123PubMedCrossRefGoogle Scholar
  21. Marshall BJ, Warren JR (1983) Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1:1311–1315Google Scholar
  22. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405PubMedCrossRefGoogle Scholar
  23. Mendz GL, Mégraud F (2002) Is the molecular basis of metronidazole resistance in microaerophilic organisms understood? Trends Microbiol 10:370–375PubMedCrossRefGoogle Scholar
  24. Miki T, Okada N, Danbara H (2004) Two periplasmic disulfide oxidoreductases, DsbA and SrgA, target outer membrane protein SpiA, a component of the Salmonella pathogenicity island 2 type III secretion system. J Biol Chem 279:34631–34642PubMedCrossRefGoogle Scholar
  25. Moore JE, Corcoran D, Dooley JSG et al (2005) Campylobacter. Vet Res 36:351–382PubMedCrossRefGoogle Scholar
  26. Moore MJ, Miller SM, Walsh CT (1992) C-terminal cysteines of Tn501 mercuric ion reductase. Biochemistry 31:1677–1685PubMedCrossRefGoogle Scholar
  27. Mulder NJ, Apweiler R, Attwood TK et al (2005) InterPro, progress and status in 2005. Nucleic Acids Res 33:D201–D205PubMedCrossRefGoogle Scholar
  28. Nakagawa S, Takai K, Inagaki F, Hirayama H, Nunoura T, Horikoshi K, Sako Y (2005) Distribution, phylogenetic diversity and physiological characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field. Environ Microbiol 7:1619–1632PubMedCrossRefGoogle Scholar
  29. Patel MP, Marcinkeviciene J, Blanchard JS (1998) Enterococcus faecalis glutathione reductase: purification, characterization and expression under normal and hyperbaric O2 conditions. FEMS Microbiol Lett 166:155–163PubMedCrossRefGoogle Scholar
  30. Rosato V, Pucello N, Giuliano G (2002) Evidence for cysteine clustering in thermophilic proteomes. Trends Genet 18:278–281PubMedCrossRefGoogle Scholar
  31. Roy C, Lancaster D, Simon J (2002) Succinate:quinone oxidoreductases from epsilon-proteobacteria. Biochim Biophys Acta 1553:84–101CrossRefGoogle Scholar
  32. Takai K, Campbell BJ, Cary SC et al (2005) enzymatic and genetic characterization of carbon and energy metabolisms by deep-sea hydrothermal chemolithoautotrophic isolates of epsilon proteobacteria. Appl Environ Microbiol 71:7310–7320PubMedCrossRefGoogle Scholar
  33. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  34. Trend MA, Jorgensen MA, Hazell SL, Mendz GL (2001) Oxidases and reductases are involved in metronidazole sensitivity in Helicobacter pylori. Int J Biochem Cell Biol 33:143–153PubMedCrossRefGoogle Scholar
  35. Warren JR (1983) Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 1:1273–1275Google Scholar
  36. Williams CH, Arscott LD, Muller S et al (2000) Thioredoxin reductase two modes of catalysis have evolved. Eur J Biochem 267:6110–6117PubMedCrossRefGoogle Scholar
  37. Wirsen CO, Sievert SM, Cavanaugh CM, Molyneaux SJ, Ahmad A, Taylor LT, DeLong EF, Taylor CD (2002) Characterization of an Autotrophic Sulfide-Oxidizing Marine Arcobacter sp. that produces filamentous sulfur. Appl Environ Microbiol 68:316–325PubMedCrossRefGoogle Scholar
  38. Wolin MJ, Wolin EA, Jacobs NJ (1961) Cytochrome-producing anaerobic Vibrio, Vibrio succinogenes, sp. n. J Bacteriol 81:911–917PubMedGoogle Scholar
  39. Zegers I, Martins JC, Willem R, Wyns L, Messens J (2001) Arsenate reductase from S. aureus plasmid pI258 is a phosphatase drafted for redox duty. Nat Struct Biol 8:843–847PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Nadeem O. Kaakoush
    • 1
  • Torsten Sterzenbach
    • 2
  • William G. Miller
    • 3
  • Sebastian Suerbaum
    • 2
  • George Louis Mendz
    • 1
  1. 1.School of Medical SciencesThe University of New South WalesSydneyAustralia
  2. 2.Institut für Medizinische Mikrobiologie und KrankenhaushygieneMedizinische Hochschule HannoverHannoverGermany
  3. 3.Produce Safety and Microbiology Research UnitU.S. Department of Agriculture, Agricultural Research ServiceAlbanyUSA

Personalised recommendations