Advertisement

Antonie van Leeuwenhoek

, Volume 92, Issue 4, pp 405–416 | Cite as

Diversity of culturable actinobacteria isolated from marine sponge Haliclona sp.

  • Shumei Jiang
  • Wei Sun
  • Minjie Chen
  • Shikun Dai
  • Long Zhang
  • Yonghong Liu
  • Kyung Jin Lee
  • Xiang Li
Original Paper

Abstract

This study describes actinobacteria isolated from the marine sponge Haliclona sp. collected in shallow water of the South China Sea. A total of 54 actinobacteria were isolated using media selective for actinobacteria. Species diversity and natural product diversity of isolates from marine sponge Haliclona sp. were analysed. Twenty-four isolates were selected on the basis of their morphology on different media and assigned to the phylum Actinobacteria by a combination of 16S rRNA gene based restriction enzymes digestion and 16S rRNA gene sequence analysis. The 16S rRNA genes of 24 isolates were digested by restriction enzymes TaqI and MspI and assigned to different groups according to their restriction enzyme pattern. The phylogenetic analysis based on 16S rRNA gene sequencing showed that the isolates belonged to the genera Streptomyces, Nocardiopsis, Micromonospora and Verrucosispora; one other isolate was recovered that does not belong to known genera based on its unique 16S rRNA gene sequence. To our knowledge, this is the first report of a bacterium classified as Verrucosispora sp. that has been isolated from a marine sponge. The majority of the strains tested belong to the genus Streptomyces and three isolates may be new species. All of the 24 isolates were screened for genes encoding polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS). PKS and NRPS sequences were detected in more than half of the isolates and the different “PKS-I—PKS-II—NRPS” combinations in different isolates belonging to the same species are indicators of their potential natural product diversity and divergent genetic evolution.

Keywords

Marine sponge Actinobacteria 16S rRNA RFLP PKS NRPS 

Notes

Acknowledgements

This research was funded by the Hundred Talents Program of Chinese Academy of Sciences. We also thank the funding of Guangdong Natural Science Fundation (06301287) and the Research Foundation of Science and Technology Planning Project of Guangdong Province (2006B36501004).

References

  1. Atlas RM, Park LC (2000) Handbook of Microbiological Media, CRC Press, Inc., Boca Raton, FloridaGoogle Scholar
  2. Ayuso-Sacido A, Genilloud O (2005) New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb Ecol 49:10–24PubMedCrossRefGoogle Scholar
  3. Bernan S, Greenstein M, Maiese WM (1997) Marine microorganisms as a source of new natural products. Adv Appl Microbiol 43:57–90PubMedCrossRefGoogle Scholar
  4. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prisep MR (2004) Marine natural products. Nat Prod Rep 21:1–49PubMedCrossRefGoogle Scholar
  5. Brantley SE, Molinski TF, Preston CM, DeLong EF (1995) Brominated acetylenic fatty acids from Xestospongia sp., a marine sponge bacterial association. Tetrahedron 51:7667–7672CrossRefGoogle Scholar
  6. Bull AT (2004) Bountiful oceans: prospecting marine microbial diversity. Trends Drug Discov 5:14–16Google Scholar
  7. Bull AT, Stach JEM, Ward AC, Goodfellow M (2005) Marine actinobacteria: perspectives, challenges and future directions. Antonie van Leeuwenhoek 87:65–79CrossRefGoogle Scholar
  8. Bultel-Poncé V, Debitus C, Blond A, Cerceau C, Guyot M (1997) Lutoside: an acyl-1-(acyl-69-mannobiosyl)-3-glycerol isolated from the sponge associated bacterium Micrococcus luteus. Tetrahedron Lett 38:5805–5808CrossRefGoogle Scholar
  9. Colquhoun JA, Heald SC, Li L, Tamaoka J, Kato C, Horikoshi K, Bull AT (1998) Taxonomy and biotransformation activities of some deepsea actinomycetes. Extremophiles 2:269–277PubMedCrossRefGoogle Scholar
  10. Conte RM, Fattorusso E, Lanzotti V, Magno S, Mayol L (1994) Lintenolides, new pentacyclic bioactive sesterterpenes from the Caribbean sponge Cacospongia cf. linteiformis. Tetrahedron 50:849–856CrossRefGoogle Scholar
  11. Cook AE, Meyers PR (2003) Rapid identification of filamentous actinomycetes to the genus level using genus-specific 16S rRNA gene restriction fragment patterns. Int J Syst Evol Microbiol 53: 1907–1915PubMedCrossRefGoogle Scholar
  12. Courtois S, Cappellano CM, Ball M, Francou FX, Normand P, Helynck G, Martinez A, Kolvek SJ, Hopke J, Osburne MS, August PR, Nalin R, Guerineau M, Jeannin P, Simonet P, Pernodet JL (2003) Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. Appl Environ Microbiol 69:49–55PubMedCrossRefGoogle Scholar
  13. Elyakov GB, Kuznetsova T, Mikhailov VV, Maltsev II, Voinov VG, Fedoreyev SA (1991) Brominated diphenyl ethers from a marine bacterium associated with the sponge Dysidea sp. Experientia 47:632–633CrossRefGoogle Scholar
  14. Faulkner DJ (2000) Marine natural products. Nat Prod Rep 17:7–55 PubMedCrossRefGoogle Scholar
  15. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  16. Fiedler HP, Brunner C, Bull AT, Ward AC, Goodfellow M, Mihm G (2005) Marine actinomycetes as a source of novel secondary metabolites. Antonie van Leeuwenhoek 87(1):37–42PubMedCrossRefGoogle Scholar
  17. Finking R, Marahiel AM (2004) Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 28:453–488CrossRefGoogle Scholar
  18. Friedrich AB, Fischer I, Proksch P, Hacker J, Hentschel U (2001) Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol Ecol 38:105–113CrossRefGoogle Scholar
  19. Ginolhac A, Jarrin C, Gillet B, Robe P, Pujic P, Tuphile K, Bertrand H, Vogel TM, Perriere G, Simonet P, Nalin R (2004) Phylogenetic analysis of polyketide synthase I domains from soil metagenomic libraries allows selection of promising clones. Appl Environ Microbiol 70:5522–5527PubMedCrossRefGoogle Scholar
  20. Haefner B (2003) Drugs from the deep: marine natural products as drug candidates. Drug Discov Today 8:536–544PubMedCrossRefGoogle Scholar
  21. Han SK, Nedashkovskaya OI, Mikhailov V, Kim SB, Bae KS (2003) Salinibacterium amurskyense gen. nov., sp. nov., a novel genus of the family Microbacteriaceae from the marine environment. Int J Syst Evol Microbiol 53:2061–2066PubMedCrossRefGoogle Scholar
  22. Haygood MG, Schmidt EW, Davidson SK, Faulkner DJ (1999) Microbial symbionts of marine invertebrates: opportunities for microbial biotechnology. J Mol Microbiol Biotechnol 1:33–43PubMedGoogle Scholar
  23. Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68(9):4431–4440PubMedCrossRefGoogle Scholar
  24. Hirota H, Tomono Y, Fusetani N (1996) Terpenoids with antifouling activity against barnacle larvae from the marine sponge Acanthella cavernosa. Tetrahedron 52:2359CrossRefGoogle Scholar
  25. Imamura N, Nishijima M, Adachi K, Sano H (1993) Novel antimycin antibiotics, urauchimycins A and B, produced by marine actinomycete. J Antibiot (Tokyo) 46:241–246Google Scholar
  26. Imhoff JF, Stöhr R (2003) Sponge-associated bacteria: general overview and special aspects of bacteria association with Halichondria panacea. In: Müller WEG (ed) Sponge (Porifera). Springer, Berlin, pp 35–58Google Scholar
  27. Jensen PR, Dwight R, Fenical W (1991) Distribution of actinomycetes in near-shore tropical marine sediments. Appl Environ Microbiol 57:1102–1108PubMedGoogle Scholar
  28. Jensen PR, Mincer TJ, Williams PG, Fenical W (2005) Marine actinomycete diversity and natural product discovery. Antonie Van Leeuwenhoek. 87(1):43–8PubMedCrossRefGoogle Scholar
  29. Ketela MM, Halo L, Manukka E, Hakala J, Mantsala P, Ylihonko K (2002) Molecular evolution of aromatic polyketides and comparative sequence analysis of polyketide ketosynthase and 16S ribosomal DNA genes from various Streptomyces species. Appl Environ Microbiol 68:4472–4479CrossRefGoogle Scholar
  30. Ketela MM, Virpi S, Halo L, Hautala A, Hakala J, Mantsala P, Ylihonko K (1999) An efficient approach for screening minimal PKS genes from Streptomyces. FEMS Microbiol Lett 180:1–6Google Scholar
  31. Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  32. Lanoot B, Vancanneyt M, Hoste B, Vandemeulebroecke K, Cnockaert MC, Dawyndt P, Liu ZH, Huang Y, Swings J (2005) Grouping of streptomycetes using 16S-ITS RFLP fingerprinting. Res Microbiol 156:755–762PubMedCrossRefGoogle Scholar
  33. Lazzarini A, Cavaletti L, Toppo G, Marinelli F (2000) Rare genera of actinomycetes as potential producers of new antibiotics. Antonie van Leeuwenhoek 78: 399–405PubMedCrossRefGoogle Scholar
  34. Lee YK, Lee JH, Lee HK (2001) Microbial symbiosis in marine sponges. J Microbiol 39:254–264Google Scholar
  35. Li X, De Boer SH (1995) Selection of polymerase chain reaction primers from an RNA intergenic spacer region for specific detection of Clavibacter michiganensis subsp. sepedonicus. Phytopathol 85(8):837–842CrossRefGoogle Scholar
  36. Liu W, Ahlert J, Gao Q, Pienkowski EW, Shen B, Thorson JS (2003) Rapid PCR amplification of minimal enediyne polyketide synthase cassettes leads to a predictive familial classification model. Proc Natl Acad Sci 100:11959–11963PubMedCrossRefGoogle Scholar
  37. Maldonado LA, Stach JEM, Pathom-aree W, Ward AC, Bull AT, Goodfellow M (2005) Diversity of culturable actinobacteria in geographically widespread marine sediments. Antonie van Leeuwenhoek 87:11–18PubMedCrossRefGoogle Scholar
  38. McVeigh HP, Munro J, Embley TM (1996) Molecular evidence for the presence of novel actinomycete lineages in a temperate forest soil. J Ind Microbiol 17:197–204CrossRefGoogle Scholar
  39. Metsä-Ketelä M, Salo V, Halo L, Hautala A, Hakala J, Mäntsälä P, Ylihonko K (1999) An efficient approach for screening minimal PKS genes from Streptomyces. FEMS Microbiol Lett 180:1–6PubMedCrossRefGoogle Scholar
  40. Mincer TJ, Jensen PR, Kauffman CA, Fenical W (2002) Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol 68:5005–5011PubMedCrossRefGoogle Scholar
  41. Moore BS (1999) Biosynthesis of marine natural products: microorganisms and macroalgae. Nat Prod Rep 16:653–674PubMedCrossRefGoogle Scholar
  42. Moran MA, Rutherford LT, Hodson RE (1995) Evidence for indigenous Streptomyces populations in a marine environment determined with a 16S rRNA probe. Appl Environ Microbiol 61:3695–3700PubMedGoogle Scholar
  43. Musat N, Werner U, Knittel K, Kolb S, Dodenhof T, van Beusekom JE, de Beer D, Dubilier N, Amann R (2006) Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Romo Basin, Wadden Sea. Syst Appl Microbiol 29(4):333–348PubMedCrossRefGoogle Scholar
  44. Pathom-aree W, Nogi Y, Sutcliffe IC, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006) Dermacoccus abyssi sp. nov., a piezotolerant actinomycete isolated from the Mariana Trench. Int J Syst Evol Microbiol 56(6):1233–1237PubMedCrossRefGoogle Scholar
  45. Perry NP, Ettouati L, Litaudon M, Blunt JW, Munro MHG (1994) Alkaloids from the Antarctic sponge Kirkpatrickia varialosa. Part 1. Variolin B, a new antitumour and antiviral compound. Tetrahedron 50:3987–3992CrossRefGoogle Scholar
  46. Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E (1996) The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092PubMedCrossRefGoogle Scholar
  47. Rheims H, Schumann P, Rohde M, Stackebrandt E (1998) Verrucosispora gifhornensis gen. nov., sp. nov., a new member of the actinobacterial family Micromonosporaceae. Int J Syst Bacteriol 48:1119–1127PubMedGoogle Scholar
  48. Riedlinger J, Reicke A, Zähner H, Krismer B, Bull AT, Maldonado LA, Ward AC, Goodfellow M, Bister B, Bischo D, Sűssmuth RD, Fiedler HP (2004) Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032. J Antibiot 57:271–279PubMedGoogle Scholar
  49. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Bio Evol 4:406–425Google Scholar
  50. Salomon CE, Margarvey NA, Sherman DH (2004) Merging the potential of microbial genetics with biological and chemical diversity: an even brighter future for marine natural product drug discovery. Nat Prod Rep 21:105–121PubMedCrossRefGoogle Scholar
  51. Schmidt EW, Obraztsova AY, Davidson SK, Faulkner DJ, Haygood MG (2000) Identification of the antifungal peptide-containing symboiont of the marine sponge Theonella swinhoei as a novel d-proteobacterium, “Candidatus Entotheonella palauensis”. Mar Biol 136:969–977CrossRefGoogle Scholar
  52. Stierle AC, Cardellina JHI, Singleton FL (1988) A marine Micrococcus produces metabolites ascribed to the sponge Tedania ignis. Experientia 44:1021PubMedCrossRefGoogle Scholar
  53. Takizawa M, Colwell RR, Hill RT (1993) Solation and diversity of actinomycetes in the Chesapeake Bay. Appl Environ Microbiol 59:997–1002PubMedGoogle Scholar
  54. Vacelet J (1975) Étude en microscopie électronique de l’association entre bactéries et spongiaires du genre Verongia (Dictyoceratida). J Microsc Biol Cell 23:271–288Google Scholar
  55. Vacelet J, Donadey C (1977) Electron microscope study of the association between some sponges and bacteria. J Exp Mar Ecol 30:301–314CrossRefGoogle Scholar
  56. Ward AC, Goodfellow M (2004) Phylogeny and functionality: taxonomy as a roadmap to genes. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM Press, Washington, D.C., pp 288–313Google Scholar
  57. Warnecke F, Amann R, Pernthaler J (2004) Actinobacterial 16S rRNA genes from freshwater habitats cluster in four distinct lineages. Environ Microbiol 6:242–253PubMedCrossRefGoogle Scholar
  58. Webster NS, Hill RT (2001) The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by α–proteobacterium. Mar Biol 138:843–851CrossRefGoogle Scholar
  59. Woese CR, Gutell R, Gupta R, Noller HF (1983) Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol Rev 47(4):621–69PubMedGoogle Scholar
  60. Zhang HT, Lee YK, Zhang W, Lee HK (2006) Culturable actinobacteria from the marine sponge Hymeniacidon perleve: isolation and phylogenetic diversity by 16S rRNA gene-RFLP analysis. Antonie van Leeuwenhoek 90:159–169PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Shumei Jiang
    • 1
  • Wei Sun
    • 1
  • Minjie Chen
    • 1
  • Shikun Dai
    • 1
  • Long Zhang
    • 2
  • Yonghong Liu
    • 1
  • Kyung Jin Lee
    • 3
  • Xiang Li
    • 1
  1. 1.Key Laboratory of Marine Bio-resources Sustainable Utilization (LMB-CAS), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouP.R. China
  2. 2.Floriculture Research Institute of Guangdong Academy of Agricultural SciencesGuangzhouP.R. China
  3. 3.Department of BiologyHannam UniversityDaedukgu, DaejeonKorea

Personalised recommendations