Antonie van Leeuwenhoek

, Volume 92, Issue 4, pp 367–389 | Cite as

Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection

Review Paper


Specific strains of fluorescent Pseudomonas spp. inhabit the environment surrounding plant roots and some even the root interior. Introducing such bacterial strains to plant roots can lead to increased plant growth, usually due to suppression of plant pathogenic microorganisms. We review the modes of action and traits of these beneficial Pseudomonas bacteria involved in disease suppression. The complex regulation of biological control traits in relation to the functioning in the root environment is discussed. Understanding the complexity of the interactions is instrumental in the exploitation of beneficial Pseudomonas spp. in controlling plant diseases.


Antibiotics Biocontrol Endophytes Induced resistance Plant-growth promotion Siderophores 



N-acyl-homoserine lactone




Induced systemic resistance


Phenazine-1-carboxylic acid


Plant growth promoting rhizobacteria


Salicylic acid


Systemic acquired resistance


Take-all decline



Thanks are due to Prof. José Olivares for the critical reading of an earlier version of the manuscript, and for his interesting advices. We are also grateful to the anonymous reviewers for their valuable comments and suggestions.


  1. Acea ML, Alexander M (1988) Growth and survival of bacteria introduced into carbon amended soil. Soil Biol Biochem 20:703–709CrossRefGoogle Scholar
  2. Adhikari TB, Joseph CM, Yang GP, Phillips DA, Nelson LM (2001) Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice. Can J Microbiol 47:916–924PubMedCrossRefGoogle Scholar
  3. Aino M, Maekawa Y, Mayama S, Kato H (1997) Biocontrol of bacterial wilt of tomato by producing seedlings colonized with endophytic antagonistic pseudomonads. In: Ogoshi A, Kobayashi K, Homma Y, Kodama F, Kondo N, Akino S (eds) Plant growth promoting rhizobacteria: present status and future prospects. Nakanishi Printing, Sapporo, Japan, pp 120–123Google Scholar
  4. Alexander DB, Zuberer DA (1993) Responses by iron-efficient and inefficient oat cultivars to inoculation with siderophores-producing bacteria in a calcareous soil. Biol Fert Soils 16:118–124CrossRefGoogle Scholar
  5. Ankenbauer RG, Cox CD (1988) Isolation and characterization of Pseudomonas aeruginosa mutants requiring salicylic acid for pyochelin biosynthesis. J Bacteriol 170:5364–5367PubMedGoogle Scholar
  6. Anthoni U, Christophersen C, Nielsen PH, Gram L, Petersen BO (1995) Pseudomonine, an isoxazolidone with siderophore activity from Pseudomonas fluorescens AH2 isolated from Lake Victorian Nile perch. J Nat Prod 58:1786–1789CrossRefGoogle Scholar
  7. Audenaert K, Pattery T, Cornelis P, Höfte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol Plant-Microbe Interact 15:1147–1156PubMedCrossRefGoogle Scholar
  8. Bahme JB, Schroth MN (1987) Spatial-temporal colonization patterns of a rhizobacterium on underground organs of potato. Phytopathology 77:1093–1100CrossRefGoogle Scholar
  9. Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32PubMedCrossRefGoogle Scholar
  10. Bakker PAHM, Lamers JG, Bakker AW, Marugg JD, Weisbeek PJ, Schippers B (1986) The role of siderophores in potato tuber yield increase by Pseudomonas putida in a short rotation of potato. Neth J Plant Pathol 92:249–256CrossRefGoogle Scholar
  11. Bakker PAHM, Schippers B, Weisbeek PJ (1988) Siderophore production by plant growth promoting Pseudomonas spp. J Plant Nutr 11:925–933CrossRefGoogle Scholar
  12. Bakker PAHM, van Peer R, Schippers B (1990) Specificity of siderophore receptors and biocontrol by Pseudomonas spp. In: Hornby D (ed) Biological control of soil-borne plant pathogens. CAB International, WallingfordGoogle Scholar
  13. Bakker PAHM, Glandorf DCM, Viebahn M, Ouwens TWM, Smit E, Leeflang P, Wernars K, Thomashow LS, Thomas-Oates JE, Van Loon LC (2002) Effects of Pseudomonas putida modified to produce phenazine-1-carboxylic acid and 2,4-diacetylphloroglucinol on the microflora of field grown wheat. Antonie van Leeuwenhoek 81:617–624PubMedCrossRefGoogle Scholar
  14. Bakker PAHM, Ran LX, Pieterse CMJ, Van Loon LC (2003) Understanding the involvement of rhizobacteria-mediated induction of systemic resistance in biocontrol of plant diseases. Can J Plant Pathol 25:5–9CrossRefGoogle Scholar
  15. Bakker PAHM, Pieterse CMJ, Van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243PubMedCrossRefGoogle Scholar
  16. Barness E, Chen Y, Hadar Y, Marschner H, Romheld V (1991) Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant Soil 130:231–241CrossRefGoogle Scholar
  17. Baron C, Zambryski PC (1995) The plant response in pathogenesis, symbiosis, and wounding: variations on a common theme? Annu Rev Genet 29:107–129PubMedCrossRefGoogle Scholar
  18. Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228CrossRefGoogle Scholar
  19. Bassler BL (2002) Small talk. Cell-to-cell communication in bacteria. Cell 10:421–424CrossRefGoogle Scholar
  20. Bauer WD, Mathesius U (2004) Plant responses to bacterial quorum sensing signals. Curr Opin Plant Biol 7:429–433PubMedCrossRefGoogle Scholar
  21. Beale E, Li G, Tan MW, Rumbaugh KP (2006) Caenorhabditis elegans senses bacterial autoinducers. Appl Environ Microbiol 72:5135–5137PubMedCrossRefGoogle Scholar
  22. Becker JO, Hedges RW, Messens E (1985) Inhibitory effect of pseudobactin on the uptake of iron by higher plants. Appl Environ Microbiol 49:1090–1093PubMedGoogle Scholar
  23. Bell CR, Dickie GA, Chan JWYF (1995) Variable response of bacteria isolated from grapevine xylem to control grape crown gal disease in planta. Am J Enol Vit 46:499–508Google Scholar
  24. Benhizia Y, Benhizia H, Benguedouar A, Muresu R, Giacomini A, Squartini A (2004) Gamma proteobacteria can nodulate legumes of the genus Hedysarum. Syst Appl Microbiol 27:462–468PubMedCrossRefGoogle Scholar
  25. Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229PubMedCrossRefGoogle Scholar
  26. Bertani I, Venturi V (2004) Regulation of the N-acyl homoserine lactone-dependent quorum-sensing system in rhizosphere Pseudomonas putida WCS358 and cross-talk with the stationary-phase RpoS sigma factor and the global regulator GacA. Appl Environ Microbiol 70:5493–5502PubMedCrossRefGoogle Scholar
  27. Bitter W, Marugg JD, De Weger LA, Tommassen J, Weisbeek PJ (1991) The ferric-pseudobactin receptor PupA of Pseudomonas putida WCS358: homology to TonB-dependent Escherichia coli receptors and specificity of the protein. Mol Microbiol 5:647–655PubMedCrossRefGoogle Scholar
  28. Blouin-Bankhead S, Landa BB, Lutton E, Weller DM, McSpadden-Gardener BB (2004) Minimal changes in rhizobacterial population structure following root colonization by wild type and transgenic biocontrol strains. FEMS Microbiol Ecol 49:307–318CrossRefGoogle Scholar
  29. Boopathi E, Rao KS (1999) A siderophore from Pseudomonas putida type A1: structural and biological characterization. Biochem Biophys Acta 1435:30–40PubMedGoogle Scholar
  30. Brand J, Lugtenberg BJJ, Glandorf DCM, Bakker PAHM, Schippers B, de Weger LA (1991) Isolation and characterization of a superior potato root-colonizing Pseudomonas strain. In: Keel C, Knoller B, Défago G (eds) Plant growth-promoting rhizobacteria: progress and prospects. IOBC/WPRS Bull 14, Interlaken, pp 350–354Google Scholar
  31. Brooks DS, Gonzalez CF, Appel DN, Filer TH (1994) Evaluation of endophytic bacteria as potential biological control agents for oak wilt. Biol Control 4:373–381CrossRefGoogle Scholar
  32. Bueno P, Soto MJ, Rodríguez-Rosales MP, Sanjuán J, Olivares J, Donaire JP (2001) Time-course of lipoxygenase, antioxidant enzyme activities and H2O2 accumulation during the early stages of Rhizobium-legume symbiosis. New Phytol 152:91–96CrossRefGoogle Scholar
  33. Bull CT, Duffy B, Voisard C, Défago G, Keel C, Haas D (2001) Characterization of spontaneous mutants of Pseudomonas fluorescens biocontrol strain CHAO. Antonie van Leeuwenhoek 79:327–336PubMedCrossRefGoogle Scholar
  34. Burr TJ, Schroth MN, Suslow T (1978) Increased potato yields by treatment of seed pieces with specific strains of Pseudomonas fluorescens and P. putida. Phytopathology 68:1377–1383CrossRefGoogle Scholar
  35. Buysens S, Heungens K, Poppe J, Höfte M (1996) Involvement of pyochelin and pyoverdine in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62:865–871PubMedGoogle Scholar
  36. Camacho-Carvajal MM, Wijfjes AHM, Mulders IHM, Lugtenberg BJJ, Bloemberg GV (2002) Characterization of NADH dehydrogenases of Pseudomonas fluorescens WCS365 and their role in competitive root colonization. Mol Plant-Microbe Interact 15:662–671PubMedCrossRefGoogle Scholar
  37. Cámara M, Daykin M, Chhabra SR (1998) Detection, purification and synthesis of N-acyl homoserine lactone quorum sensing molecules. Methods Microb Bacterial Pathogen 27:319–330CrossRefGoogle Scholar
  38. Cankar K, Kraigher H, Ravnikar M, Rupnik M (2005) Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst). FEMS Microbiol Lett 244:341–345PubMedCrossRefGoogle Scholar
  39. Capdevila S, Martínez-Granero FM, Sánchez-Contreras M, Rivilla R, Martín M (2004) Analysis of Pseudomonas fluorescens F113 genes implicated in flagellar filament synthesis and their role in competitive root colonization. Microbiology 150:3889–3897PubMedCrossRefGoogle Scholar
  40. Chancey ST, Wood DW, Pierson LS (1999) Two-component transcriptional regulation of N-acyl-homoserine lactone production in Pseudomonas aureofaciens. Appl Environ Microbiol 65:2294–2299PubMedGoogle Scholar
  41. Chanway CP, Shishido M, Nairn J, Jungwirth S, Markham J, Xiao G, Holl FB (2000) Endophytic colonization and field responses of hybrid spruce seedlings after inoculation with plant growth-promoting rhizobacteria. For Ecol Manage 133:81–88CrossRefGoogle Scholar
  42. Chen C, Bauske EM, Musson G, Rodríguez-Kabana R, Kloepper JW (1995) Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biol Control 5:83–91CrossRefGoogle Scholar
  43. Chin-A-Woeng TFC, Bloemberg GV, Mulders IHM, Dekkers LC, Lugtenberg BJJ (2000) Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant-Microbe Interact 13:1340–1345PubMedCrossRefGoogle Scholar
  44. Chin-A-Woeng TFC, Van den Broek D, de Voer G, van der Drift KM, Tuinman S, Thomas-Oates JE, Lugtenberg BJJ, Bloemberg GV (2001) Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into de growth medium. Mol Plant-Microbe Interact 14:969–979PubMedCrossRefGoogle Scholar
  45. Chin-A-Woeng TFC, Van den Broek D, Lugtenberg BJJ, Bloemberg GV (2005) The Pseudomonas chlororaphis PCL1391 sigma regulator psrA represses the production of the antifungal metabolite phenazine-1-carboxamide. Mol Plant-Microbe Interact 18:244–253PubMedCrossRefGoogle Scholar
  46. Compant S, Duffy B, Nowak J, Clément C, Ait Barka E (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959PubMedCrossRefGoogle Scholar
  47. Conn VM, Franco CMM (2004) Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism an sequencing of 16S rRNA clones. Appl Environ Microbiol 70:1787–1794PubMedCrossRefGoogle Scholar
  48. Cox CD, Rinehart KL, Moore ML, Cook JC (1981) Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci USA 78:4256–4260PubMedCrossRefGoogle Scholar
  49. Crosa JH (1997) Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. Microbiol Mol Biol Rev 61:319–336PubMedGoogle Scholar
  50. De Bellis P, Ercolani GL (2001) Growth interactions during bacterial colonization of seedlings rootlets. Appl Environ Microbiol 67:1945–1948PubMedCrossRefGoogle Scholar
  51. Degenhardt J, Gershenzon J, Baldwin IT, Kessler A (2003) Attracting friends to feast and foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr Opin Biotechnol 14:169–176PubMedCrossRefGoogle Scholar
  52. Dekkers LC, Phoelich CC, van der Fits L, Lugtenberg BJJ (1998a) A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. Proc Natl Acad Sci USA 95:7051–7056PubMedCrossRefGoogle Scholar
  53. Dekkers LC, van der Bij AJ, Mulders IHM, Phoelich CC, Wentwoord RAR, Glandorf DCM, Wijffelman CA, Lugtenberg BJJ (1998b) Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and of NADH:ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. Mol Plant-Microbe Interact 11:763–771PubMedCrossRefGoogle Scholar
  54. Dekkers LC, Mulders IHM, Phoelich CC, Chin-A-Woeng TFC, Wijfjes AHM, Lugtenberg BJJ (2000) The sss colonization gene of the tomato-Fusarium oxysporum f. sp. radicis-lycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild-type Pseudomonas spp. Bacteria. Mol Plant-Microbe Interact 13:1177–1183PubMedCrossRefGoogle Scholar
  55. De Meyer G, Höfte M (1997) Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588–593PubMedCrossRefGoogle Scholar
  56. De Vleesschauwer D, Cornelis P, Höfte M (2006) Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporte grisea but enhances Rhizoctonia solani susceptibility in rice. Mol Plant-Microbe Interact 19:1406–1419PubMedCrossRefGoogle Scholar
  57. De Weert S, Vermeiren H, Mulders HM, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, de Mot R, Lugtenberg BJJ (2002) Flagella-driven chemotaxis toward exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15:1173–1180PubMedCrossRefGoogle Scholar
  58. De Weger LA, van der Vlugt CIM, Wijfjes AHM, Bakker PAHM, Schippers B, Lugtenberg BJJ (1987) Flagella of aplant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J Bacteriol 169:2769–2773PubMedGoogle Scholar
  59. Duffy BK, Défago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438PubMedGoogle Scholar
  60. Duijff BJ, Bakker PAHM, Schippers B (1994a) Ferric pseudobactin 358 as an iron source for carnation. J Plant Nutr 17:2069–2078CrossRefGoogle Scholar
  61. Duijff BJ, De Kogel WJ, Bakker PAHM, Schippers B (1994b) Influence of pseudobactin-358 on the iron nutrition of barley. Soil Biol Biochem 26:1681–1688CrossRefGoogle Scholar
  62. Duijff BJ, Gianinazzi-Pearson V, Lemanceau P (1997) Involvement of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fluorescens strain WCS417r. New Phytol 135:325–334CrossRefGoogle Scholar
  63. Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B, Glickmann E, Oger PM, Dessaux Y (2001) Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp Appl Environ Microbiol 67:1198–1209PubMedCrossRefGoogle Scholar
  64. Elvira-Recuenco M, Van Vuurde JWL (2000) Natural incidence of endophytic bacteria in pea cultivars under field conditions. Can J Microbiol 46:1036–1041PubMedCrossRefGoogle Scholar
  65. Fuchs R, Schäfer M, Geoffroy V, Meyer JM (2001) Siderotyping – a powerful tool for the characterization of pyoverdines. Curr Topics Med Chem 1:31–57CrossRefGoogle Scholar
  66. Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468PubMedCrossRefGoogle Scholar
  67. Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756PubMedCrossRefGoogle Scholar
  68. Gao M, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant-Microbe Interact 16:827–834PubMedCrossRefGoogle Scholar
  69. Garbeva P, Van Overbeek LS, Van Vuurde JWL, Van Elsas JD (2001) Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microbiol Ecol 41:369–383Google Scholar
  70. Gardan L, Cottin S, Bollet C, Hunault G (1991) Phenotypic heterogeneity of Pseudomonas syringae van Hall. Res Microbiol 142:995–1003PubMedCrossRefGoogle Scholar
  71. Gardan L, Shafik H, Belouin S, Broch R, Grimont F, Grimont PAD (1999) DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). Int J Syst Bacteriol 49:469–478PubMedGoogle Scholar
  72. Gardner JM, Chandler JL, Feldman AW (1984) Growth promotion and inhibition by antibiotic-producing fluorescent pseudomonads on citrus roots. Plant Soil 77:103–113CrossRefGoogle Scholar
  73. Geels FP, Schippers B (1983) Selection of antagonistic fluorescent Pseudomonas spp. and their colonization and persistence following treatment of seed potatoes. Phytopathol Z 108:193–206CrossRefGoogle Scholar
  74. Geels FP, Lamers JG, Hoekstra O, Schippers B (1986) Potato plant response to seed tuber bacterization in the field in various rotations. Neth J Plant Pathol 92:257–272CrossRefGoogle Scholar
  75. Gerhardson B (2002) Biological substitutes for pesticides. Trends Biotechnol 20:338–343PubMedCrossRefGoogle Scholar
  76. Germaine K, Keogh E, García-Cabellos G, Borreans B, van der Lelie D, Barac T, Oeyen L, Vangronsveld J, Moore FP, Moore ERB, Campbell CD, Ryan D, Dowling DN (2004) Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol 48:109–118PubMedCrossRefGoogle Scholar
  77. Germida JJ, Siciliano SD (2001) Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol Fert Soils 33:410–415CrossRefGoogle Scholar
  78. Glandorf DCM, Verheggen P, Jansen T, Jorritsma J-W, Smit E, Leeflang P, Wernars K, Thomashow LS, Laureijs E, Thomas-Oates JE, Bakker PAHM, Van Loon LC (2001) Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizosphere microflora of field-grown wheat. Appl Environ Microbiol 67:3371–3378PubMedCrossRefGoogle Scholar
  79. Glick B (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117CrossRefGoogle Scholar
  80. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signalling processes. Soil Biol Biochem 37:395–412CrossRefGoogle Scholar
  81. Grosch R, Faltin F, Lottman J, Kofoet A, Berg G (2005) Effectiveness of 3 antagonistic bacterial isolates to control Rhizoctonia solani Kuhn on lettuce and potato. Can J Microbiol 51:345–353PubMedCrossRefGoogle Scholar
  82. Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319PubMedCrossRefGoogle Scholar
  83. Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153PubMedCrossRefGoogle Scholar
  84. Haas D, Keel C, Reimmann C (2002) Signal transduction in plant-beneficial rhizobacteria with biocontrol properties. Antonie van Leeuwenhoek 81:385–395PubMedCrossRefGoogle Scholar
  85. Hallmann J, Quadt-Hallmann A, Mahafee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914Google Scholar
  86. Hallmann J, Quadt-Hallmann A, Rodríguez-Kabana R, Kloepper JW (1998) Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil Biol Biochem 30:925–937CrossRefGoogle Scholar
  87. Hamdan H, Weller DM, Thomashow LS (1991) Relative importance of fluorescent siderophores and other factors in biological control of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79 and M4-80R. Appl Environ Microbiol 57:3270–3277PubMedGoogle Scholar
  88. Han SH, Anderson AJ, Yang KY, Cho BH, Kim KY, Lee MC, Kim YH, Kim YC (2006a) Multiple determinants influence root colonization and induction of induced systemic resistance by Pseudomonas chlororaphis 06. Mol Plant Pathol 7:463–472CrossRefPubMedGoogle Scholar
  89. Han SH, Lee SJ, Moon JH, Park KH, Yang KY, Cho BH, Kim KY, Kim YW, Lee MC, Anderson AJ, Kim YC (2006b) GacS-dependent production of 2R,3R-butanediol by Pseudomonas chlororaphis 06 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol Plant-Microbe Interact 19:924–930PubMedCrossRefGoogle Scholar
  90. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685PubMedCrossRefGoogle Scholar
  91. Heeb S, Haas D (2001) Regulatory roles of the GacS/GacA two-component system in plant-associated and other Gram-negative bacteria. Mol Plant-Microbe Interact 14:1351–1363PubMedCrossRefGoogle Scholar
  92. Höfte M (1993) Classes of microbial siderophores. In: Barton LL, Hemming BC (eds) Iron chelation in plants and soil microorganisms. Academic Press, San DiegoGoogle Scholar
  93. Höfte M, Dong Q, Kourambas S, Krishnapillai V, Sherratt D, Mergeay M (1994) The sss gene product, which affects pyoverdine production in Pseudomonas aeruginosa 7NSK2, is a site-specific recombinase. Mol Microbiol 14:1011–1020PubMedCrossRefGoogle Scholar
  94. Howell CR, Stipanovic RD (1980) Suppression of Pythium ultimun-induced damping off of cotton seedlings by Pseudomonas fluorescens and its antibiotic pyoluteorin. Phytopathology 77:286–292Google Scholar
  95. Howie WJ, Cook RJ, Weller DM (1987) Effects of soil matric potential and cell motility on wheat root colonization by fluorescent pseudomonads suppressive to take-all. Phytopathology 77:286–292CrossRefGoogle Scholar
  96. Iavicoli A, Boutet E, Buchala A, Métraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant-Microbe Interact 16:851–858PubMedCrossRefGoogle Scholar
  97. Ishimaru CA, Loper JE (1993) Biochemical and genetic analysis of siderophores produced by plant-associated Pseudomonas and Erwinia species. In: Barton LL, Hemming BC (eds) Iron chelation in plants and soil microorganisms. Academic Press, San DiegoGoogle Scholar
  98. Jurkevitch E, Hadar Y, Chen Y (1986) Remedy of lime-induced chlorosis in peanuts by Pseudomonas sp. siderophores. J Plant Nutr 9:535–545CrossRefGoogle Scholar
  99. Jurkevitch E, Hadar Y, Chen Y (1988) Involvement of bacterial siderophores in the remedy of lime-induced chlorosis on peanut. Soil Sci Soc Am J 52:1032–1037CrossRefGoogle Scholar
  100. Jurkevitch E, Hadar Y, Chen Y (1992) Differential siderophore utilization and iron uptake by soil and rhizosphere bacteria. Appl Environ Microbiol 58:119–124PubMedGoogle Scholar
  101. Kay E, Dubuis C, Haas D (2005) Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc Natl Acad Sci USA 102:17136–17141PubMedCrossRefGoogle Scholar
  102. Kerry BR (2000) Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu Rev Phytopathol 79:584–589Google Scholar
  103. Kloepper JW, Schroth MN, Miller TD (1980) Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology 70:1078–1082CrossRefGoogle Scholar
  104. Koster M, Van de Vossenberg J, Leong J, Weisbeek PJ (1993) Identification and characterization of the pupB gene encoding an inducible ferric-pseudobactin receptor of Pseudomonas putida WCS358. Mol Microbiol 8:591–601PubMedCrossRefGoogle Scholar
  105. Kraus J, Loper JE (1992) Lack of evidence for a role of antifungal metabolite production by Pseudomonas fluorescens Pf-5 in biological control of Pythium damping-off of cucumber. Phytopathology 82:264–271CrossRefGoogle Scholar
  106. Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T, Boch J, Bohm M, Friedrich F, Hurek T, Krause L, Linke B, McHardy AC, Sarkar A, Schneiker S, Syed AA, Thauer R, Vorholter FJ, Weidner S, Pühler A, Reinhold-Hurek B, Kaiser O, Goesmann A (2006) Complete genome of the mutualistic, N-2-fixing grass endophyte Azoarcus sp strain BH72. Nat Biotechnol 24:1385–1391PubMedCrossRefGoogle Scholar
  107. Kuiper I, Bloemberg GV, Noreen S, Thomas-Oates JE, Lugtenberg BJJ (2001) Increased uptake of putrescine in the rhizosphere inhibits competitive root colonization by Pseudomonas fluorescens strain WCS365. Mol Plant-Microbe Interact 14:1096–1104PubMedCrossRefGoogle Scholar
  108. Kuklinsky-Sobral HL, Araujo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251PubMedCrossRefGoogle Scholar
  109. Kuklinsky-Sobral HL, Araujo WL, Mendes R, Pizzirani-Kleiner AA, Azevedo JL (2005) Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with glyphosate herbicide. Plant Soil 273:91–99CrossRefGoogle Scholar
  110. Kwok OCH, Fahy PC, Hoitink HAJ, Kuter GA (1987) Interactions between bacteria and Trichoderma hamatum in suppression of Rhizoctonia damping-off in bark compost media. Phytopathology 77:1206–1212CrossRefGoogle Scholar
  111. Lacava PT, Andreote FD, Araujo WL, Azevedo JL (2006) Characterization of the endophytic bacterial community from citrus by isolation, specific PCR and DGGE. Pesquisa Agropecuaria Bras 41:637–642Google Scholar
  112. Lam ST (1990) Microbial attributes associated with root colonization. In: Baker RR, Dunn PE (eds) New directions in biological control: alternatives for suppressing agricultural pests and diseases. Alan R Liss Inc, New YorkGoogle Scholar
  113. Lamb TG, Tonkyn DW, Kluepfel DA (1996) Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue. Can J Microbiol 42:1112–1120Google Scholar
  114. Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995a) Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85:1021–1027CrossRefGoogle Scholar
  115. Leeman M, Van Pelt JA, Hendrickx MJ, Scheffer RJ, Bakker PAHM, Schippers B (1995b) Biocontrol of fusarium wilt of radish in commercial greenhouse trials by seed treatment with Pseudomonas fluorescens WCS374. Phytopathology 85:1301–1305CrossRefGoogle Scholar
  116. Leeman M, Den Ouden FM, van Pelt JA, Dirkx FPM, Steijl H, Bakker PAHM, Schippers B (1996) Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Pyhtopathology 86:149–155CrossRefGoogle Scholar
  117. Lemanceau P, Bakker PAHM, De Kogel WJ, Alabouvette C, Schippers B (1992) Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of Fusarium wilt of carnations by nonpathogenic Fusarium oxysporum Fo47. Appl Environ Microbiol 58:2978–2982PubMedGoogle Scholar
  118. Lemanceau P, Bakker PAHM, De Kogel WJ, Alabouvette C, Schippers B (1993) Antagonistic effect of nonpathogenic Fusarium oxysporum Fo47 and pseudobactin 358 upon pathogenic Fusarium oxysporum f. sp. dianthi. Appl Environ Microbiol 59:74–82PubMedGoogle Scholar
  119. Leong J (1986) Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu Rev Phytopathol 24:187–209CrossRefGoogle Scholar
  120. Lifshitz R, Simonson C, Scher FM, Kloepper JW, Rodrick-Semple C, Zaleska I (1986) Effect of rhizobacteria on the severity of Phytophthora root rot of soybean. Can J Plant Pathol 8:102–106CrossRefGoogle Scholar
  121. Lim HS, Lee JM, Kim SD (2002) A plant growth-promoting Pseudomonas fluorescens GL20: mechanism for disease suppression, outer membrane receptors for ferric siderophore, and genetic improvement for increased biocontrol efficacy. J Microbiol Biotechnol 12:249–257Google Scholar
  122. Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606CrossRefGoogle Scholar
  123. Long HH, Furuya N, Kurose D, Yamamoto I, Takeshita M, Takanami Y (2004) Identification of the endophytic bacterial isolates and their in vitro and in vivo antagonism against Ralstonia solanacearum. J Fac Agric Kyushu Univ 49:233–241Google Scholar
  124. Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant-Microbe Interact 4:5–13Google Scholar
  125. Loper JE, Henkels MD (1999) Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 65:5357–5363PubMedGoogle Scholar
  126. Loper JE, Haack C, Schroth MN (1985) Population dynamics of soil pseudomonads in the rhizosphere of potato (Solanum tuberosum L). Appl Environ Microbiol 49:416–422PubMedGoogle Scholar
  127. Lugtenberg BJJ, Dekkers LC (1999) What make Pseudomonas bacteria rhizosphere competent? Environ Microbiol 1:439–446PubMedCrossRefGoogle Scholar
  128. Lugtenberg BJJ, Kravchenko LV, Simons M (1999) Tomato seed and root exudates sugars: composition, utilization by Pseudomonas biocontrol strains, and role in rhizosphere colonization. Environ Microbiol 1:439–466PubMedCrossRefGoogle Scholar
  129. Lugtenberg BJJ, Dekkers LC, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490PubMedCrossRefGoogle Scholar
  130. Marschner P, Crowley DE (1998) Phytosiderophores decrease iron stress and pyoverdine production of Pseudomonas fluorescens Pf-5 (PVD-INAZ). Soil Biol Biochem 30:1275–1280CrossRefGoogle Scholar
  131. Martínez-Abarca F, Herrera-Cervera JA, Bueno P, Sanjuán J, Bisseling T, Olivares J (1998) Involvement of salicylic acid in the establishment of the Rhizobium meliloti-alfalfa symbiosis. Mol Plant-Microbe Interact 11:153–155CrossRefGoogle Scholar
  132. Martínez-Granero F, Capdevila S, Sánchez-Contreras M, Martín M, Rivilla R (2005) Two site-specific recombinases are implicated in phenotypic variation and competitive rhizosphere colonization in Pseudomonas fluorescens. Microbiology 151:975–983PubMedCrossRefGoogle Scholar
  133. Martínez-Granero F, Rivilla R, Martín M (2006) Rhizosphere selection of highly motile phenotypic variants of Pseudomonas fluorescens with enhanced competitive colonization ability. Appl Environ Microbiol 72:3429–3434PubMedCrossRefGoogle Scholar
  134. Marugg JD, DdeWeger LA, Nielander HB, Oorthuizen M, Recourt K, Lugtenberg B, van der Hofstad GAJM, Weisbeek PJ (1989) Cloning and characterization of a gene encoding an outer membrane protein required for siderophore uptake in Pseudomonas putida WCS358. J Bacteriol 171:2819–2826PubMedGoogle Scholar
  135. Maurhofer M, Reimmann C, Sacherer SP, Heeb S, Haas D, Défago G (1998) Salicylic acid biosynthesis genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopthology 88:678–684CrossRefGoogle Scholar
  136. Mavrodi O, Mavrodi DV, Weller DM, Thomashow LS (2006) Role of ptsP, orfT, and sss recombinase genes in root colonization by Pseudomonas fluorescens Q8r1-96. Appl Envrion Microbiol 72:7111–7122CrossRefGoogle Scholar
  137. Mazzola M, Fujimoto DK, Thomashow LS, Cook RJ (1995) Variation in sensitivity of Gaeumannomyces graminis to antibiotics produced by fluorescent Pseudomonas spp. and effect on biological control of take-all of wheat. Appl Environ Microbiol 61:2554–2559PubMedGoogle Scholar
  138. McInroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342CrossRefGoogle Scholar
  139. McKhann HI, Paiva NL, Dioxin RA, Hirsute AM (1997) Chalcone synthase transcripts are detected in alfalfa root hairs following inoculation with wild-type Rhizobium meliloti. Mol Plant-Microbe Interact 10:50–58CrossRefGoogle Scholar
  140. Mercado-Blanco J, van der Drift KMGM, Olsson PE, Thomas-Oates JE, van Loon LC, Bakker PAHM (2001) Analysis of the pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374. J Bacteriol 183:1909–1920PubMedCrossRefGoogle Scholar
  141. Meyer JM (2000) Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 174:135–142PubMedCrossRefGoogle Scholar
  142. Meyer JM, Azelvandre P, Georges C (1992) Iron metabolism in Pseudomonas: salicylic acid, a siderophore of Pseudomonas fluorescens CHAO. Biofactors 4:23–27PubMedGoogle Scholar
  143. Meziane H, Van der Sluis I, Van Loon L, Höfte M, Bakker PAHM (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185CrossRefPubMedGoogle Scholar
  144. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199PubMedCrossRefGoogle Scholar
  145. Mirleau P, Delorme S, Philippot L, Meyer JM, Mazurier S, Lemanceau P (2000) Fitness in soil and rhizosphere of Pseudomonas fluorescens C7R12 compared with a C7R12 mutant affected in pyoverdine synthesis and uptake. FEMS Microbiol Ecol 34:35–44PubMedCrossRefGoogle Scholar
  146. Misko AL, Germida JJ (2002) Taxonomic and functional diversity of pseudomonads isolated from rots of field-grown canola. FEMS Microbiol Ecol 42:399–407PubMedCrossRefGoogle Scholar
  147. Miyamoto T, Kawahara M, Minamisawa K (2004) Novel endophytic nitrogen-fixing clostridia from the grass Miscanthus sinensis as revealed by terminal fragment length polymorphism analysis. Appl Environ Microbiol 70:6580–6586PubMedCrossRefGoogle Scholar
  148. Mocali S, Bertelli E, Di Cello F, Mengoni A, Sfalanga A, Viliani F, Caciotti A, Tegli S, Surico G, Fani R (2003) Fluctuation of bacteria isolated from elm tissues during different seasons and from different plant organs. Res Microbiol 154:105–114PubMedCrossRefGoogle Scholar
  149. Neilands JB, Leong SA (1986) Siderophores in relation to plant growth and disease. Annu Rev Plant Physiol 37:187–208CrossRefGoogle Scholar
  150. Nejad P, Johnson PA (2000) Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato. Biol Control 18:208–215CrossRefGoogle Scholar
  151. Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, dos Santos VAPM, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Lee PC, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen J, Timmis KN, Dusterhoft A, Tummler B, Fraser CM (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808PubMedCrossRefGoogle Scholar
  152. Notz R, Maurhofer M, Schnider-Keel U, Duffy B, Haas D, Defágo G (2001) Biotic factors affecting expression of the 2,4-diacetylphloroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopathology 91:873–881PubMedCrossRefGoogle Scholar
  153. Ongena M, Daayf F, Jacques P, Thonart P, Benhamou N, Paulitz TC, Cornelis P, Koedam N, Belanger RR (1999) Protection of cucumber against Pythium root rot by fluorescent pseudomonads: predominant role of induced resistance over siderophores and antibiosis. Plant Pathol 48:66–76CrossRefGoogle Scholar
  154. Ongena M, Jourdan E, Schäfer M, Kech C, Budzikiewicz H, Luxen A, Thonart P (2005) Isolation of an N-alkylated benzylamine derivative from Pseudomonas putida BTP1 as elicitor of induced systemic resistance in bean. Mol Plant-Microbe Interact 18:562–569PubMedCrossRefGoogle Scholar
  155. O´Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676PubMedGoogle Scholar
  156. Palleroni NJ, Kunisawa R, Contopoulou R, Doudoroff M (1973) Nucleic acid homologies in genus Pseudomonas. Int J Syst Bacteriol 23:333–339Google Scholar
  157. Park MS, Jung SR, Lee MS, Kim KO, Do JO, Lee KH, Kim SB, Bae KS (2005) Isolation and characterization of bacteria associated with two sand dune plant species, Calystegia soldanella and Elymus mollis. J Microbiol 43:219–227PubMedGoogle Scholar
  158. Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GSA, Mavrodi DV, DeBoy RT, Seshadri R, Ren QH, Madupu R, Dodson RJ, Durkin AS, Brinkac LM, Daugherty SC, Sullivan SA, Rosovitz MJ, Gwinn ML, Zhou LW, Schneider DJ, Cartinhour SW, Nelson WC, Weidman J, Watkins K, Tran K, Khouri H, Pierson EA, Pierson LS, Thomashow LS, Loper JE (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873–878PubMedCrossRefGoogle Scholar
  159. Pechy-Tarr M, Bottiglieri M, Mathys S, Lejbolle KB, Schnider-Keel U, Maurhofer M, Keel C (2005) RpoN (σ54) controls production of antifungal compounds and biocontrol activity in Pseudomonas fluorescens CHA0. Mol Plant-Microbe Interact 18:260–272PubMedCrossRefGoogle Scholar
  160. Pesci EC, Milbank JBJ, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signalling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:11229–11234PubMedCrossRefGoogle Scholar
  161. Pierson LS III, Keppenne VD, Wood DW (1994) Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30-84 is regulated by PhzR in response to cell density. J Bacteriol 176:3966–3974PubMedGoogle Scholar
  162. Pierson LS III, Wood DW, Pierson EA (1998) Homoserine lactone-mediated gene regulation in plant-associated bacteria. Annu Rev Phytopathol 36:207–225PubMedCrossRefGoogle Scholar
  163. Pieterse CMJ, Van Wees SCM, Van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, Van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580PubMedCrossRefGoogle Scholar
  164. Pieterse CMJ, Van Pelt JA, Verhagen BWM, Ton J, Van Wees SCM, Leon-Kloosterziel KM, Van Loon LC (2003) Induced systemic resistance by plant growth-promoting rhizobacteria. Symbiosis 35:39–54Google Scholar
  165. Pillay VK, Nowak J (1997) Inoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a pseudomonad bacterium. Can J Microbiol 43:354–361CrossRefGoogle Scholar
  166. Pirttilä AM, Joensuu P, Pospiech H, Jalonen J, Hohtola A (2004) Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate bowing of callus cultures. Physiol Plant 121:305–312PubMedCrossRefGoogle Scholar
  167. Pirttilä AM, Pospiech H, Laukkanen H, Myllyla R, Hohtola A (2005) Seasonal variations in location and population structure of endophytes in buds of Scots pine. Tree Physiol 25:289–297PubMedGoogle Scholar
  168. Press CM, Wilson M, Tuzun S, Kloepper JW (1997) Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol Plant-Microbe Interact 10:761–768CrossRefGoogle Scholar
  169. Raaijmakers JM, Weller DM (1998) Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Mol Plant-Microbe Interact 11:144–152CrossRefGoogle Scholar
  170. Raaijmakers JM, Bitter W, Punte HLM, Bakker PAHM, Weisbeek PJ, Schippers B (1994) Siderophore-receptor PupA as a marker to monitor wild-type Pseudomonas putida WCS358 in natural environments. Appl Environ Microbiol 60:1184–1190PubMedGoogle Scholar
  171. Raaijmakers JM, Leeman M, Van Oorschot MMP, Van der Sluis I, Schippers B, Bakker PAHM (1995a) Dose-response relationships in biological control of fusarium wilt of radish by Pseudomonas spp. Phytopathology 85:1075–1081CrossRefGoogle Scholar
  172. Raaijmakers JM, Van der Sluis I, Koster M, Bakker PAHM, Weisbeek PJ, Schippers B (1995b) Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Can J Microbiol 41:126–135CrossRefGoogle Scholar
  173. Raaijmakers JM, Bonsall RF, Weller DM (1999) Effect of population density of Pseudomonas fluorescens on production of 2,4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology 89:470–475PubMedCrossRefGoogle Scholar
  174. Raaijmakers JM, De Bruijn I, De Cock MJD (2006) Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis and regulation. Mol Plant-Microbe Interact 19:699–710PubMedCrossRefGoogle Scholar
  175. Rainey PB (1999) Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol 1:243–257PubMedCrossRefGoogle Scholar
  176. Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Smaiyappan R (2001) Induction of systemic resistance by plant growth-promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11CrossRefGoogle Scholar
  177. Ramos-González MI, Campos MJ, Ramos JL (2005) Analysis of Pseudomonas putida KT2440 gene expression in the maize rhizosphere: in vivo expression technology capture and identification of root-activated promoters. J Bacteriol 187:4033–4041PubMedCrossRefGoogle Scholar
  178. Ran LX, Li ZN, Wu GJ, Van Loon LC, Bakker PAHM (2005a) Induction of systemic resistance against bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. Eur J Plant Pathol 113:59–70CrossRefGoogle Scholar
  179. Ran LX, Van Loon LC, Bakker PAHM (2005b) No role for bacterially produced salicylic acid in rhizobacterial induction of systemic resistance in Arabidopsis. Phytopathology 95:1349–1355PubMedCrossRefGoogle Scholar
  180. Ravel J, Cornelis P (2003) Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol 11:195–200PubMedGoogle Scholar
  181. Reinhold-Hurek B, Hurek T (1998) Interactions of gramineous plants with Azoarcus spp. and other diazotrophs: identification, localization, and perspectives to study their function. Crit Rev Plant Sci 17:29–54CrossRefGoogle Scholar
  182. Reiter B, Sessitsch A (2006) Bacterial endophytes of the wildflower Crocus albiflorus analyzed by characterization of isolates and by cultivation-independent approach. Can J Microbiol 52:140–149PubMedCrossRefGoogle Scholar
  183. Reiter B, Wermbter N, Gyamfi S, Schwab H, Sessitch A (2003) Endophytic Pseudomonas spp. populations of pathogen-infected potato plants analysed by 16S rDNA- and 16S rRNA-based denaturating gradient gel electrophoresis. Plant Soil 257:397–405CrossRefGoogle Scholar
  184. Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions wit hosts. Mol Plant-Microbe Interact 19:827–837PubMedCrossRefGoogle Scholar
  185. Sánchez-Contreras M, Martín M, Villacieros M, O’Gara F, Bonilla I, Rivilla R (2002) Phenotypic selection and phase variation occur during alfalfa root colonization by Pseudomonas fluorescens F113. Appl Environ Microbiol 184:1587–1596Google Scholar
  186. Sarniguet A, Kraus J, Henkels MD, Muehlchen AM, Loper JE (1995) The sigma factor σS affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. Proc Natl Acad Sci USA 92:12255–12259PubMedCrossRefGoogle Scholar
  187. Scher FM, Kloepper JW, Singleton C, Zaleska I, Laliberte M (1988) Colonization of soybean roots by Pseudomonas and Serratia species: relationship to bacterial motility, chemotaxis and generation time. Phytopathology 78:1055–1059CrossRefGoogle Scholar
  188. Schnider U, Keel C, Blumer C, Troxler J, Défago G, Haas D (1995) Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHA0 enhances antibiotic production and improves biocontrol abilities. J Bacteriol 177:5387–5392PubMedGoogle Scholar
  189. Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918PubMedCrossRefGoogle Scholar
  190. Serino L, Reimmann C, Baur H, Beyeler M, Visca P, Haas D (1995) Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa. Mol Gen Genet 249:217–228PubMedCrossRefGoogle Scholar
  191. Serino L, Reimmann C, Visca P, Beyeler M, della Chiesa V, Haas D (1997) Biosynthesis of pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas aeruginosa. J Bacteriol 179:248–257Google Scholar
  192. Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39:23–32PubMedCrossRefGoogle Scholar
  193. Seveno NA, Morgan JAW, Wellington EMH (2001) Growth of Pseudomonas aureofaciens PGS12 and the dynamics of HHL and phenazine production in liquid culture, on nutrient agar, and on plant roots. Microb Ecol 41:314–324PubMedGoogle Scholar
  194. Sharma A, Johri BN, Sharma AK, Glick BR (2003) Plant growth-promoting bacterium Pseudomonas sp. strain GRP(3) influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol Biochem 35:887–894CrossRefGoogle Scholar
  195. Siciliano SD, Germida JJ (1999) Taxonomic diversity of bacteria associated with the roots of field-grown transgenic Brassica napus cv. Quest, compared to the non-transgenic B. napus cv. Excel and B. rapa cv. Parkland. FEMS Microbiol Ecol 29:263–272CrossRefGoogle Scholar
  196. Siddiqui IA, Shoukat SS (2003) Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2,4-diacetylphloroglucinol. Soil Biol Biochem 35:1615–1623CrossRefGoogle Scholar
  197. Sikora RA (2006) In-planta supressiveness: implications for the biological enhancement of crops and healthy root system. In: Consejería de Agricultura y Agua región de Murcia (eds) Abstracts of the XIII Congress of the Spanish Society of Phytopathology, Murcia, Spain, 18–22 September 2006Google Scholar
  198. Simons M, van der Bij AJ, Brand I, de Weger LA, Wijffelman CA, Lugtenberg BJJ (1996) Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant-Microbe Interact 9:600–607PubMedGoogle Scholar
  199. Simons M, Permentier HP, de Weger LA, Wijffelman CA, Lugtenberg BJJ (1997) Amino acid synthesis is necessary for tomato root colonization by Pseudomonas fluorescens strain WCS365. Mol Plant-Microbe Interact 10:102–106CrossRefGoogle Scholar
  200. Slininger PJ, Sheawilbur MA (1995) Liquid culture pH, temperature, and carbon (not nitrogen) source regulate phenazine productivity of the take-all biocontrol agent Pseudomonas fluorescens 2-79. Appl Microbiol Biotechnol 43:794–800PubMedCrossRefGoogle Scholar
  201. Soto MJ, Sánjuán J, Olivares J (2006) Rhizobia and plant-pathogenic bacteria: common infection weapons. Microbiology-SGM 152:3167–3174CrossRefGoogle Scholar
  202. Steidle A, Allesen-Holm M, Riedel K, Berg G, Givskov M, Molin S, Eberl L (2002) Identification and characterization of an N-acylhomoserine lactone-dependent quorum-sensing system in Pseudomonas putida strain IsoF. Appl Environ Microbiol 68:6371–6382PubMedCrossRefGoogle Scholar
  203. Stephens PM, O’Sullivan M, O’Gara F (1987) Influence of bacteriophages on the colonization of strains of Pseudomonas fluorescens in the rhizosphere of sugarbeet. Appl Environ Microbiol 53:1164–1167PubMedGoogle Scholar
  204. Sticher L, Mauch-Mani B, Métraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270PubMedCrossRefGoogle Scholar
  205. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FSL, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GKS, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock REW, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964PubMedCrossRefGoogle Scholar
  206. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502PubMedCrossRefGoogle Scholar
  207. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Products 67:257–268CrossRefGoogle Scholar
  208. Sturz A, Kimpinski J (2004) Endoroot bacteria derived from marigolds (Tagetes spp.) can decrease soil population densities of root-lesion nematodes in the potato root zone. Plant Soil 262:241–249CrossRefGoogle Scholar
  209. Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30CrossRefGoogle Scholar
  210. Surette MA, Sturz AV, Lada RR, Nowak J (2003) Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): their localization, population density, biodiversity and their effects on plant growth. Plant Soil 253:381–390CrossRefGoogle Scholar
  211. Suslow TV, Schroth MN (1982) Rhizobacteria on sugar beets: effects of seed application and root colonization on yield. Phytopathology 72:199–206CrossRefGoogle Scholar
  212. Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviours in associated bacteria. Mol Plant-Microbe Interact 13:637–648PubMedCrossRefGoogle Scholar
  213. Thomashow LS (1996) Biological control of plant root pathogens. Curr Opin Biotechnol 7:343–347PubMedCrossRefGoogle Scholar
  214. Thomashow LS, Weller DM (1988) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508PubMedGoogle Scholar
  215. Thomashow LS, Weller DM (1990) Role of antibiotics and siderophores in biocontrol of Take-all disease of wheat. Plant Soil 129:93–99CrossRefGoogle Scholar
  216. Thomashow LS, Weller DM, Bonsall RF, Pierson LS III (1990) Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol 56:908–912PubMedGoogle Scholar
  217. Timms-Wilson TM, Ellis RJ, Renwick A, Rhodes DJ, Weller DM, Mavrodi DV, Thomashow LS, Bailey MJ (2000) Chromosomal insertion of the phenazine biosynthetic pathway (phzABCDEFG) enhances the efficacy of damping off disease control by Pseudomonas fluorescens 54/96. Mol Plant-Microbe Interact 13:1293–1300PubMedCrossRefGoogle Scholar
  218. Timms-Wilson TM, Kilshaw K, Bailey MJ (2004) Risk assessment for engineered bacteria used in biocontrol of fungal disease in agricultural crops. Plant Soil 266:57–67CrossRefGoogle Scholar
  219. Turnbull GA, Morgan JAW, Whipps JM, Saunders JR (2001a) The role of motility in the in vitro attachment of Pseudomonas putida PaW8 to wheat roots. FEMS Microbiol Ecol 35:57–65PubMedCrossRefGoogle Scholar
  220. Turnbull GA, Morgan JAW, Whipps JM, Saunders JR (2001b) The role of bacterial motility in the survival and spread of Pseudomonas fluorescens in soil and in the attachment and colonization of wheat roots. FEMS Microbial Ecol 36:21–31CrossRefGoogle Scholar
  221. Van den Broek D, Chin-A-Woeng TFC, Eijkemans K, Mulders HM, Bloemberg GV, Lugtenberg BJJ (2003) Biocontrol traits of Pseudomonas spp. are regulated by phase variation. Mol Plant-Microbe Interact 16:1003–1012PubMedCrossRefGoogle Scholar
  222. Van den Broek D, Bloemberg GV, Lugtenberg BJJ (2005a) The role of phenotypic variation in rhizosphere Pseudomonas bacteria. Environ Microbiol 7:1686–1697PubMedCrossRefGoogle Scholar
  223. Van den Broek D, Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2005b) Role of RpoS and MutS in phase variation of Pseudomonas sp PCL1171. Microbiology 151:1403–1408PubMedCrossRefGoogle Scholar
  224. Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Ann Rev Phytopathol 36:553–483Google Scholar
  225. Van Peer R, Schippers B (1988) Plant growth responses to bacterization with selected Pseudomonas spp. strains and rhizosphere microbial development in hydroponic cultures. Can J Microbiol 35:456–463CrossRefGoogle Scholar
  226. Van Peer R, Schippers B (1992) Lipopolysaccharides of plant-growth promoting Pseudomonas sp. strain WCS417r induce resistance in carnation to fusarium wilt. Neth J Plant Pathol 98:129–139CrossRefGoogle Scholar
  227. Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734CrossRefGoogle Scholar
  228. Van Sluys MA, Monteiro-Vitorello CB, Camargo LEA, Menck CFM, da Silva ACR, Ferro JA, Oliveira MC, Setubal JC, Kitajima JP, Simpson AJ (2002) Comparative genomic analysis of plant-associated bacteria. Annu Rev Phytopathol 40:169–189PubMedCrossRefGoogle Scholar
  229. Van Wees SCM, Pieterse CMJ, Trijssenaar A, Van’t Westende Y, Hartog F, Van Loon LC (1997) Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant-Microbe Interact 10:716–724PubMedCrossRefGoogle Scholar
  230. Van Wees SCM, De Swart EAM, Van Pelt JA, Van Loon LC, Pieterse CMJ (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:8711–8716PubMedCrossRefGoogle Scholar
  231. Vasse J, de Billy F, Truchet G (1993) Abortion of infection during the Rhizobium meliloti-alfalfa symbiotic interaction is accompanied by a hypersensitive reaction. Plant J 4:555–566CrossRefGoogle Scholar
  232. Vega FE, Pava-Ripoll M, Posada F, Buyer JS (2005) Endophytic bacteria in Coffea arabica L. J Basic Microbiol 45:371–380PubMedCrossRefGoogle Scholar
  233. Venturi V (2006) Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev 30:274–291PubMedCrossRefGoogle Scholar
  234. Verberne MC, Verpoorte R, Bol JF, Mercado-Blanco J, Linthorst HJM (2000) Overproduction of salicylic acid in plants by bacterial transgenes enhances pathogen resistance. Nat Biotechnol 18:779–783PubMedCrossRefGoogle Scholar
  235. Verhagen BW, Glazebrook J, Zhu T, Chang HS, van Loon LC, Pieterse CMJ (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant-Microbe Interact 10:895–908CrossRefGoogle Scholar
  236. Viebahn M, Glandorf DCM, Ouwens TWM, Smit E, Leeflang P, Wernars K, Thomashow LS, Van Loon LC, Bakker PAHM (2003) Repeated introduction of genetically modified Pseudomonas putida WCS358r without intensified effects on the indigenous microflora of field-grown wheat. Appl Environ Microbiol 69:3110–3118PubMedCrossRefGoogle Scholar
  237. Viebahn M, Doornbos R, Wernars K, Van Loon LC, Smit E, Bakker PAHM (2005) Ascomycete communities in the rhizosphere of field-grown wheat are not affected by introductions of genetically modified Pseudomonas putida WCS358r. Environ Microbiol 7:1775–1785PubMedCrossRefGoogle Scholar
  238. Visca P, Ciervo A, Sanfilippo V, Orsi N (1993) Iron-regulated salicylate synthesis by Pseudomonas spp J Gen Microbiol 139:1995–2001PubMedGoogle Scholar
  239. Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358PubMedGoogle Scholar
  240. Von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482CrossRefGoogle Scholar
  241. Wang YQ, Ohara Y, Nakayashiki H, Tosa Y, Mayama S (2005) Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol Plant-Microbe Interact 18:385–396PubMedCrossRefGoogle Scholar
  242. Wei HL, Zhang LQ (2006) Quorum-sensing system influences root colonization and biological control ability in Pseudomonas fluorescens 2P24. Antonie van Leeuwenhoek 89:267–280PubMedCrossRefGoogle Scholar
  243. Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512CrossRefGoogle Scholar
  244. Welbaum G, Sturz AV, Dong Z, Nowak J (2004) Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit Rev Plant Sci 23:175–193CrossRefGoogle Scholar
  245. Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407CrossRefGoogle Scholar
  246. Weller DM, Cook RJ (1986) Increased growth of wheat by seed treatments with fluorescent pseudomonads and implications of Pythium control. Can J Plant Pathol 8:328–334CrossRefGoogle Scholar
  247. Weller DM, Raaijmakers JM, McSpadden-Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348PubMedCrossRefGoogle Scholar
  248. Weller DM, Van Pelt JA, Mavrodi DV, Pieterse CMJ, Bakker PAHM, Van Loon LC (2004) Induced systemic resistance (ISR) in Arabidopsis against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol (DAPG)-producing Pseudomonas fluorescens. Phytopathology 94:S108Google Scholar
  249. Whistler CA, Corbell NA, Sarniguet A, Ream W, Loper JE (1998) The two-component regulators GacS and GacA influence accumulation of the stationary-phase sigma factor σS and the stress response in Pseudomonas fluorescens Pf-5. J Bacteriol 180:6635–6641PubMedGoogle Scholar
  250. Wood DW, Gong FC, Daykin MM, Williams P, Pierson LS (1997) N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. J Bacteriol 179:7663–7670PubMedGoogle Scholar
  251. Xu GW, Gross DC (1986) Selection of fluorescent pseudomonads antagonistic to Erwinia caratovora and suppressive of potato seed piece decay. Phytopathology 76:414–422CrossRefGoogle Scholar
  252. Yang HL, Sun XL, Song W, Wang YS, Cai MY (1999) Screening, identification and distribution of endophytic associative diazotrophs isolated from rice plants. Acta Bot Sin 41:927–931Google Scholar
  253. Young JM, Triggs CM (1994) Evaluation of determinative tests for pathovars of Pseudomonas syringae van Hall 1902. J Appl Bacteriol 77:195–207PubMedGoogle Scholar
  254. Zakhia F, Jeder H, Willems A, Gillis M, Dreyfus B, de Lajudie P (2006) Diverse bacteria associated with root nodules of spontaneous legumes in Tunisia and first report for nifH-like gene within the genera Microbacterium and Starkeya. Microbial Ecol 51:375–393CrossRefGoogle Scholar
  255. Zhang Z, Pierson LS III (2001) A second quorum-sensing system regulates cell surface properties but not phenazine antibiotic production in Pseudomonas aureofaciens. Appl Environ Microbiol 67:4305–4315PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Jesús Mercado-Blanco
    • 1
  • Peter A. H. M. Bakker
    • 2
  1. 1.Departamento de Protección de Cultivos, Instituto de Agricultura SostenibleConsejo Superior de Investigaciones Científicas (CSIC)CordobaSpain
  2. 2.Plant Microbe Interactions, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations