Advertisement

Antonie van Leeuwenhoek

, Volume 92, Issue 2, pp 207–220 | Cite as

Studies on bacteriocin (thermophilin T) production by Streptococcus thermophilus ACA-DC 0040 in batch and fed-batch fermentation modes

  • Anastasios AktypisEmail author
  • Matheus Tychowski
  • George Kalantzopoulos
  • George Aggelis
Original Paper

Abstract

Growth conditions that support bacteriocin (thermophilin T) production by Streptococcus thermophilus ACA-DC 0040 were identified. Synthesis of thermophilin T occurred during primary metabolic growth, while its specific rate of synthesis seemed to be optimal at T = 30°C. Thermophilin T activity rapidly decreased in the stationary phase, especially at high growth temperature (i.e. T = 42°C). In media with high content of complex nitrogen sources, high amounts of bacteriocin were detected in the growth environment, while about an 8-fold increase of thermophilin T titer and a 2-fold increase of specific synthesis rate was achieved when a fed-batch fermentation mode was applied.

Keywords

LAB bacteriocins Thermophilin T production Streptococcus thermophilus Modelling Batch and Fed-batch fermentation 

Abbreviations

α

Specific bacteriocin production (AU g−1)

AU

Arbitrary units

B

Bacteriocin activity (titer) per volume of growth medium (MAU l−1)

Bmax

Maximum bacteriocin activity (MAU l−1)

CNS

Complex nitrogen source concentration (g l−1)

LAB

Lactic acid bacteria

qB

Specific bacteriocin production rate (h−1)

r

Specific growth rate (h−1)

rmax

Maximum specific growth rate (h−1)

rD

Specific bacteriocin inactivation rate (h−1)

x

Biomass (cell dry mass) concentration (g l−1)

xmax

Maximum biomass concentration (g l−1)

References

  1. Aasen ΙΜ, Μoretro T, Katla Τ, Αxelson L (2000) Influence of complex nutrients, temperature and pH on bacteriocin production by Lactobacillus sakei CCUG 42687. Appl Microbiol Biotechnol 53:159–166PubMedCrossRefGoogle Scholar
  2. Aktypis A, Kalantzopoulos G, Huis in’t Veld JHJ, Brink B (1998) Purification and characterization of thermophilin T, a novel bacteriocin produced by Strep. thermophilus ACA-DC 0040. J Appl Microbiol 84:568–576PubMedCrossRefGoogle Scholar
  3. Amiali MN, Lacroix C, Simard RE (1998) High nisin Z production by Lactococcus lactis UL 719 in whey permeate with aeration. World J Microbiol Biotechnol 14:887–894CrossRefGoogle Scholar
  4. Barcena JMB, Sineriz F, De Lano DG, Rodriguez A, Suarez JE (1998) Chemostat production of Plantaricin C by Lactobacillus plantarum LL441. Appl Environ Microbiol 64(9):2512–3514Google Scholar
  5. Beshkova DM, Simova ED, Frengova GI, Simov ZI, Spasov ZN (2002) Effect of oxygen on batch yogurt cultures. World J Microbiol Biotechnol 18:361–365CrossRefGoogle Scholar
  6. Brurberg MB, Nes IF, Eijsink VJH (1997) Pherormone-induced production of antimicrobial peptides in Lactobacillus. Mol Microbiol 26:347–360PubMedCrossRefGoogle Scholar
  7. Cabo ML, Murado MA, Gonzalez MP, Vazquez JA, Pastoriza L (2001) An empirical model for describing the effects of nitrogen sources on nisin production. Lett Appl Microbiol 33(6):425–429PubMedCrossRefGoogle Scholar
  8. Callewaert R, De Vuyst L (2000) Bacteriocin production with Lactobacillus amylovorus DCE 471 is improved and stabilized by fed-batch fermentation. Appl Environ Microbiol 66:606–613PubMedCrossRefGoogle Scholar
  9. De Vuyst L, Vandamme EJ (1991a) Microbial manipulation of nisin biosynthesis and fermentation. In: Jung G, Sahl HG (eds) Nisin and novel antibiotics. ESCOM Science Publishers, Leiden, The Netherlands, pp 397–409Google Scholar
  10. De Vuyst L, Callewaert R, Pot B (1996a) Characterization and antagonistic activity of Lactobacillus amylovorus DCE 471 and large scale isolation of its bacteriocin amylovorin L471. System Appl Microbiol 19:9–20Google Scholar
  11. De Vuyst L, Callewaert R, Crabbe K (1996b) Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin production under unfavourable growth conditions. Microbiol 142:817–827CrossRefGoogle Scholar
  12. Desmazeaud M (1983) L’état des connaissances en matière de nutrition des bactéries lactiques. Lait 63:267–316CrossRefGoogle Scholar
  13. Eijsink VGH, Brurberg MB, Midelhoven PJ, Nes IF (1996) Induction of bacteriocin production in Lactobacillus sake by a secreted peptide. J Bacteriol 178:2232–2237PubMedGoogle Scholar
  14. Ekinci FY, Barefoot SF (2006) Fed-batch enhancement of jensiin G, a bacteriocin produced by Propionibacterium thoenii (jensenii) P126. Food Microbiol 23:325–330PubMedCrossRefGoogle Scholar
  15. Gilliland SE (1986) Bacterial starter cultures for foods. CRC Press, Boca Raton, FloridaGoogle Scholar
  16. Goebel WF, Barry GT, Shedlovsky T (1956) Colicine K. I. The production of colicine K in media maintained at constant pH. J Exp Med 103:577–588PubMedCrossRefGoogle Scholar
  17. Kim WS, Hall RJ, Dunn NW (1997) The effect of nisin concentration and nutrient depletion on nisin production of Lactococcus lactis. Appl Microbiol Biotechnol 48:449–453PubMedCrossRefGoogle Scholar
  18. Klaenhammer TR (1988) Bacteriocins of lactic acid bacteria. Biochimie 70:337–349PubMedCrossRefGoogle Scholar
  19. Klaenhammer TR (1993) Genetics of bacteriocin produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–85PubMedGoogle Scholar
  20. Lejeune R, Callewaert R Crabbe K, De Vuyst L (1998) Modelling the growth and bacteriocin production by Lactobacillus amylovorus DCE 471 in batch cultivation. J Appl Microbiol 84:159–168CrossRefGoogle Scholar
  21. Leroy F, De Vuyst L (1999a) Temperature and pH conditions that prevail during fermentation of sausages are optimal for the production of the antilisterial bacteriocin sakacin K. Appl Environ Microbiol 65:974–981Google Scholar
  22. Leroy F, De Vuyst L (1999b) The presence of salt and curing agent reduces bacteriocin production by Lactobacillus sakei CTC 494, a potential starter culture for sausage fermentation. Appl Environ Microbiol 65:5350–5356Google Scholar
  23. Leroy F, De Vuyst L (2001) Growth of the bacteriocin-producing Lactobacillus sakei strain CTC 494 in MRS broth is strongly reduced due to nutrient exhaustion: a nutrient depletion model for the growth of lactic acid bacteria. Appl Environ Microbiol 67:4407–4413PubMedCrossRefGoogle Scholar
  24. Leroy F, De Vuyst L (2002) Bacteriocin production by Enterococcus faecium RZS C5 is cell density limited and occurs in the very early growth phase. Int J Food Microbiol 72:155–164PubMedCrossRefGoogle Scholar
  25. Mantovani HC, Worobo H, Hu RW, Russell JB (2002) Bovicin HC5, a bacteriocin from Streptococcus bovis HC5. Microbiol 148:3347–3352Google Scholar
  26. Mataragas M, Metaxopoulos J, Galiotou M, Drosinos EH (2003) Influence of pH and temperature on growth and bacteriocin production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. Meat Sci 64:265–271CrossRefGoogle Scholar
  27. Messens W, Neysens P, Vansieleghem W, Vanderhoeven J, De Vuyst L (2002) Modelling growth and bacteriocin production by Lactobacillus amylovorus DCE 471 in response to temperature and pH values used for sourdough fermentations. Appl Environ Microbiol 68:1431–1435PubMedCrossRefGoogle Scholar
  28. Messens W, De Vuyst L (2002) Inhibitory substances produced by Lactobacilli isolated from sourdoughts – a review. Int J Food Microbiol 72:31–43PubMedCrossRefGoogle Scholar
  29. Mc Meekin TA, Olley JN, Ross T, Ratkowsky DA (eds) (1993) Predictive Microbiology: Theory and application. Wiley, New York, pp 11–70Google Scholar
  30. Monod J (1942) Recherches sur la croissance des cultures bactériennes. Hermann, ParisGoogle Scholar
  31. Nes IF, Diep DB, Håvarstein LS, Brurberg MB, Eijsink V, Holo H (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie van Leeuwenhoek 70:113–128PubMedCrossRefGoogle Scholar
  32. Ogunbanwo ST, Sanni AI, Onilude AA (2003) Influence of cultural conditions on the production of bacteriocin by Lactobacillus brevis OG1. African J Biotechnol 2(7):179–184Google Scholar
  33. O’Sullivan L, Ross RP, Hill C (2002) Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie 84(5):593–604PubMedCrossRefGoogle Scholar
  34. Parente E, Brienza A, Ricciardi A, Addario G (1997) Growth and bacteriocin production by Enterococcus faecium DPC1146 in batch and continuous culture. J Ind Microbiol Biotechnol 18:62–67PubMedCrossRefGoogle Scholar
  35. Tagg JR., Dajani AS, Wannamaker LW (1976) Bacteriocins of gram-positive bacteria. Bacteriol Rev 40:722–756PubMedGoogle Scholar
  36. Ten Brink B, Minekus M, Van der Vossen JMBM, Leer RJ, Huis in’t Veld JHJ (1994) Antimicrobial activity of lactobacilli : preliminary characterization and optimization of production of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus M46. J Appl Bacteriol 77:140–148PubMedGoogle Scholar
  37. Todorov SD, Dicks LMT (2006) Effect of medium components on bacteriocin production by Lactobacillus plantarum strains ST23LD and ST341LD, isolated from spoiled olive brine. Microbiol Res 161:102–108PubMedCrossRefGoogle Scholar
  38. Verhulst PF (1838) Notice sur la loi que la population suit dans son accroissement. Correspondances Mathématiques et Physiques 10:113–121Google Scholar
  39. Verluyten J, Leroy F, De Vuyst L (2004) Influence of complex nutrient source on growth and Curvacin A production by sausage isolate Lactobacillus curvatus LTH 1174. Appl Environ Microbiol 70:5081–5088PubMedCrossRefGoogle Scholar
  40. Yamane T (1995) Bioreactor operating modes. In: Asenjo JA, Merchuk JC (eds) Bioreactor system design. New York, pp 479–509Google Scholar
  41. Zisu B, Shah NP (2003) Effects of pH, temperature, supplementation with whey protein concentrate, and adjunct cultures on the production of exopolysaccharides by Streptococcus thermophilus 1275. J Dairy Sci 86:3405–3415PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Anastasios Aktypis
    • 1
    Email author
  • Matheus Tychowski
    • 2
  • George Kalantzopoulos
    • 1
  • George Aggelis
    • 3
  1. 1.Laboratory of Dairy Research, Department of Food Science and TechnologyAgricultural University of AthensAthensGreece
  2. 2.Department of Food EngineeringAgricultural University of WroclawWroclawPoland
  3. 3.Division of Genetics, Cell and Development Biology, Department of BiologyUniversity of PatrasPatrasGreece

Personalised recommendations