Advertisement

Antonie van Leeuwenhoek

, Volume 92, Issue 2, pp 155–164 | Cite as

Bacterial diversity associated with the Caribbean tunicate Ecteinascidia turbinata

  • Ana E. Pérez-Matos
  • William Rosado
  • Nadathur S. Govind
Original Paper

Abstract

The Caribbean tunicate, Ecteinascidia turbinata produces the anti-cancer agent ET-743 that could well be a metabolite of an associated bacterial strain. This current study aims at the analysis of bacteria that are persistently and specifically associated with this invertebrate. Utilizing techniques such as denaturing gradient gel electrophoresis, DNA sequencing and phylogenetic analysis of bacteria from E. turbinata collected from different locations in the Caribbean Sea, we report here the identification of five possible persistently associated bacteria. Of these, only one organism, Candidatus Endoecteinascidia frumentensis, was found specifically associated to E. turbinata from the Caribbean and has also been found to be associated with E. turbinata from the Mediterranean. These experiments suggest that assessment of bacterial diversity associated with invertebrates from different geographical sites might be an effective way of identifying persistently and specifically associated bacteria.

Keywords

Persistently associated bacteria Ecteinascidia turbinata Microbial diversity Tunicates Unculturable bacteria 

Notes

Acknowledgements

This study has been supported, in part by a seed money grant from the Sea Grant College program of the University of Puerto Rico (to AEP and WR) and the N.I.H MBRS-SCORE program (SO6-GM 08103 to NSG).

References

  1. Altschul SF, Lipman DJ (1990) Protein database searches for multiple alignments. Proc Natl Acad Sci USA 87(14):5509–5513PubMedCrossRefGoogle Scholar
  2. Bernan VS, Greenstein M, Maiese WM (1997) Marine microorganisms as a source of new natural products. Adv Appl Microbiol 43:57–89PubMedCrossRefGoogle Scholar
  3. Brennan Y, Callen WN, Christoffersen L, Dupree P, Goubet F, Healey S, Hernandez M, Keller M, Li K, Palackal N, Sittenfeld A, Tamayo G, Wells S, Hazlewood GP, Mathur EJ, Short JM, Robertson DE, Steer BA (2004) Unusual microbial xylanases from insect guts. Appl Environ Microbiol 70(6):3609–3617PubMedCrossRefGoogle Scholar
  4. Colwell RR, Grimes DJ (2000) Semantic and strategies, In: Colwell RR, Grimes DJ (eds) Nonculturable microorganisms in the environment, ASM Press, Washington, D.C pp 1–6Google Scholar
  5. Davidson SK, Allen SW, Lim GE, Anderson CM, Haygood MG (2001) Evidence for the biosynthesis of bryostatins by the bacterial symbiont “Candidatus Endobugula sertula” of the bryozoan Bugula neritina. Appl Environ Microbiol 67(10):4531–4537PubMedCrossRefGoogle Scholar
  6. Diez B, Pedros-Alio C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemlages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67(7):2942–2951PubMedCrossRefGoogle Scholar
  7. Farrelly V, Rainey FA, Stackebrandt E (1995) Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl Environ Microbiol 61(7):2798–2801PubMedGoogle Scholar
  8. Flam F (1994) Chemical prospectors scour the seas for promising drugs. Science 266(5189):1324–1325PubMedCrossRefGoogle Scholar
  9. Friedrich AB, Fischer I, Proksch P, Hacker J, Hentschel U (2001) Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol Ecol 1301:1–9Google Scholar
  10. Fukatsu T (2001) Secondary intracellular symbiotic bacteria in aphids of the genus Yamatocallis (Homoptera: Aphididae: Drepanosiphinae). Appl Environ Microbiol 67(11):5315–5320PubMedCrossRefGoogle Scholar
  11. Goto S, Anbutsu H, Fukatsu T (2006) Asymmetrical interactions between Wolbachia and Spiroplasma endosymbionts coexisting in the same insect host. Appl Environ Microbiol 72(7):4805–4810PubMedCrossRefGoogle Scholar
  12. Grobkopf R, Janssen PH, Liesack W (1998) Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA sequence retrieval. Appl Environ Microbiol 64(3):960–969Google Scholar
  13. Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440PubMedCrossRefGoogle Scholar
  14. Hildebrand M, Waggoner LE, Lim GE, Sharp KH, Ridley CP, Haygood MG (2004) Approaches to identify, clone, and express symbiont bioactive metabolite genes. Nat Prod Rep 21(1):122–142PubMedCrossRefGoogle Scholar
  15. Hirose E, Maruyuama T, Cheng L, Lewin RA (1996) Intracellular symbiosis of a photosynthetic prokaryote, Prochloron sp., in a colonial ascidian. Invert Biol 115:343–348Google Scholar
  16. König GM, Kehraus S, Seibert SF, Abdel-Lateff A, Müller D (2005) Natural products from marine organisms and their associated microbes. Chem BioChem 6:1–10Google Scholar
  17. Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  18. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82(20):6955–6959PubMedCrossRefGoogle Scholar
  19. Lim GE, Haygood MG (2004) “Candidatus Endobugula glebosa,” a specific bacterial symbiont of the marine bryozoan Bugula simplex. Appl Environ Microbiol 70(8):4921–4929PubMedCrossRefGoogle Scholar
  20. Lindhal V, Bakken LR (1995) Evaluation of methods for extraction of bacteria from soil. FEMS Microbiol Ecol 16:135–142CrossRefGoogle Scholar
  21. Mendola D (2000) Aquacultural production of bryostatin 1 and ecteinacidin 743., In: Fusetani N (ed) Drugs from the sea, Karger Baser, pp 120–133Google Scholar
  22. Moss C, Green DH, Perez B, Velasco A, Henriquez R, McKenzie JD (2003) Intracellular bacteria associated with the ascidian Ecteinascidia turbinata: phylogenetic and in situ hybridization analysis. Mar Biol 143:99–110CrossRefGoogle Scholar
  23. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700PubMedGoogle Scholar
  24. Proksch P, Edrada RA, Ebel R (2002) Drugs from the seas-current status and microbiological implications. Appl Environ Microbiol 59:125–134Google Scholar
  25. Rinehart KL, Holt TG, Fregeau NL, Stroh JG, Keifer PA, Sun F, Li LH, Martin DJ (1990) Ecteinascidins 729, 743, 745, 759A, 759B, and 770: Potent antitumor agents from the Caribbean tunicate Ecteinascidia turbinata. J Org Chem 55(15):4512–4515CrossRefGoogle Scholar
  26. Rosado W, Govind NS (2003) Identification of carbohydrate degrading bacteria in sub-tropical regions. Rev Biol Trop 51:205–210PubMedGoogle Scholar
  27. Schirmer A, Gadkari R, Reeves CD, Ibrahim F, DeLong EF, Hutchinson CR (2005) Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl Environ Microbiol 71(8):4840–4849PubMedCrossRefGoogle Scholar
  28. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71(3):1501–1506PubMedCrossRefGoogle Scholar
  29. Schmidt EW, Nelson JT, Rasko DA, Sudek S, Eisen JA, Haygood MG, Ravel J (2005) Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc Natl Acad Sci USA 102(20):7315–7320PubMedCrossRefGoogle Scholar
  30. Schmidt EW, Obraztsova AY, Davidson SK, Faulkner DJ, Haygood MG (2000) Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel d-proteobacterium “Candidatus Entothenonella palauensis”. Mar Biol 136:969–977CrossRefGoogle Scholar
  31. Suzuki MT, Taylor LT, DeLong EF (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl Environ Microbiol 66(11):4605–4614PubMedCrossRefGoogle Scholar
  32. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progresive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  33. Velasco A, Acebo P, Gomez A, Schleissner C, Rodriguez P, Aparicio T, Conde S, Munoz R, de la Calle F, Garcia JL, Sanchez-Puelles JM (2005) Molecular characterization of the safracin biosynthetic pathway from Pseudomonas fluorescens A2-2: designing new cytotoxic compounds. Mol Microbiol 56(1):144–154PubMedCrossRefGoogle Scholar
  34. Wang Y, Stingl U, Anton-Erxleben F, Zimmer M, Brune A (2004) ‘ Candidatus Hepatincola porcellionum’ gen. nov., sp. nov., a new, stalk-forming lineage of Rickettsiales colonizing the midgut glands of a terrestrial isopod. Arch Microbiol 181(4):299–304PubMedCrossRefGoogle Scholar
  35. Webster NS, Wilson KJ, Blackall LL, Hill RT (2001) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67(1):434–444PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Ana E. Pérez-Matos
    • 1
  • William Rosado
    • 1
  • Nadathur S. Govind
    • 1
  1. 1.Department of Marine SciencesUniversity of Puerto RicoLajasUSA

Personalised recommendations