Advertisement

Phylogenetic utility of protein (RPB2, β-tubulin) and ribosomal (LSU, SSU) gene sequences in the systematics of Sordariomycetes (Ascomycota, Fungi)

  • Alvin M. C. TangEmail author
  • Rajesh Jeewon
  • Kevin D. Hyde
Original Paper

Abstract

The Sordariomycetes is an important group of fungi whose taxonomic relationships and classification is obscure. There is presently no multi-gene molecular phylogeny that addresses evolutionary relationships among different classes and orders. In this study, phylogenetic analyses with a broad taxon sampling of the Sordariomycetes were conducted to evaluate the utility of four gene regions (LSU rDNA, SSU rDNA, β-tubulin and RPB2) for inferring evolutionary relationships at different taxonomic ranks. Single and multi-gene genealogies inferred from Bayesian and Maximum Parsimony analyses were compared in individual and combined datasets. At the subclass level, SSU rDNA phylogenies demonstrate their utility as a marker to infer phylogenetic relationships at higher levels. All analyses with SSU rDNA alone, combined LSU rDNA and SSU rDNA, and the combined 28 S rDNA, SSU rDNA and RPB2 datasets resulted in three subclasses: Hypocreomycetidae, Sordariomycetidae and Xylariomycetidae, which correspond well to established morphological classification schemes. At the ordinal level, the best resolved phylogeny was obtained from the combined LSU rDNA and SSU rDNA datasets. Individually, the RPB2 gene dataset resulted in significantly higher number of parsimony informative characters. Our results supported the recent separation of Boliniaceae, Chaetosphaeriaceae and Coniochaetaceae from Sordariales and placement of Coronophorales in Hypocreomycetidae. Microascales was found to be paraphyletic and Ceratocystis is phylogenetically associated to Faurelina, while Microascus and Petriella formed another clade and basal to other members of Halosphaeriales. In addition, the order Lulworthiales does not appear to fit in any of the three subclasses. Congruence between morphological and molecular classification schemes is discussed.

Keywords

RPBII rDNA Sordariomycetes β-Tubulin 

Notes

Acknowledgements

This study was funded by the Hong Kong Research Grants Council No. HKU 7320/02M and HKU 7322/04M. The University of Hong Kong is acknowledged for supporting A.M.C. Tang a postgraduate studentship. We are grateful to Prof. Pedro Crous of CBS (Netherlands), Dr. Eric Mckenzie of ICMP (New Zealand), IFO and HKUCC (Hong Kong) for providing cultures. Dhanasekaran Vijaykrishna, Helen Leung, Lam Duong and Lei Cai are thanked for their assistance.

References

  1. Alfaro ME, Zoller S, Lutzoni F (2003) Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Mol Biol Evol 20:255–266PubMedCrossRefGoogle Scholar
  2. Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory Mycology, 4th edn. John Wiley and Sons Inc., New YorkGoogle Scholar
  3. Arenal F, Platas G, Peláez F (2005) Two new Preussia species defined based on morphological and molecular evidencerotein coding genes. 20:1–15Google Scholar
  4. Arx JA von (1975) On Thielavia and some similar genera of ascomycetes. Stud Mycol 8:1–31Google Scholar
  5. Arx JA, von (1978) Notes on the Microascaceae with the description of two new species. Persoonia 10:23–21Google Scholar
  6. Arx JA von, Müller E (1954) Die Gattungen der amerosporen Pyrenomyceten. Beitrage szur Kreyptogämenflora der Schweiz 11:1–434Google Scholar
  7. Barr ME (1983) The ascomycetes connection. Mycologia 75:1–13CrossRefGoogle Scholar
  8. Barr ME (1987) Prodromus to Class Loculoascomycetes. Newell, Amherst MassGoogle Scholar
  9. Barr ME (1990) Prodromus to nonlichenized, pyrenomycetous members of Class Hymenoascomycetes. Mycotaxon 39:43–184Google Scholar
  10. Benny GL, Kimbrough JW (1980) A synopsis of the families and orders of Plectomycetes with keys to genera. Mycotaxon 12:1–91Google Scholar
  11. Berbee ML (1996) Loculoascomycete origin and evolution of filamentous ascomycete morphology based on 18 S rRNA gene sequence data. Mol Biol Evol 13:462–470PubMedGoogle Scholar
  12. Berbee ML, Taylor JW (1992) Two ascomycete classes based on fruiting-body characters and ribosomal DNA sequence. Mol Bio Evol 9:278–284Google Scholar
  13. Berbee ML, Carmean DA, Winka K (2000) Ribosomal. DNA and resolution of branching order among the ascomycota: how many nucleotides are enough?. Mol Phylogenet Evol 17:337–344PubMedCrossRefGoogle Scholar
  14. Campbell J, Shearer CA (2004) Annulusmagnus and Ascitendus, two new genera in the Annulatascaceae. Mycologia 96:822–833CrossRefGoogle Scholar
  15. Campbell J, Volkmann-Kohlmeyer B, Grafenhan T, Spatafora JM, Kohlmeyer J (2005) A re-evaluation of Lulworthiales: relationships based on 18 S and 28 S rDNA. Mycol Res 109:556–568PubMedCrossRefGoogle Scholar
  16. Cai L, Jeewon R, Hyde KD (2005) Phylogenetic evaluation and taxonomic revision of Schizothecium based on ribosomal DNA and protein coding genes. Fung Divers 19:1–17Google Scholar
  17. Cai L, Jeewon R, Hyde KD (2006) Phylogenetic investigations of Sordariaceae based on multiple gene sequences and morphology. Mycol Res 110:137–150PubMedCrossRefGoogle Scholar
  18. Chaverri P, Castelbury LA, Samuels GJ, Geiser DM (2003) Multilocus phylogenetic structure within the Trichoderma harzianum/Hypocrea lixii complex. Mol Phylogenet Evol 27:302–313PubMedCrossRefGoogle Scholar
  19. Colless DH (1980) Congruence between morphometric and allozyme data for Menidia species: a reappraisal. Syst Zool 29:288–299CrossRefGoogle Scholar
  20. Cunnington JH, Lawrie AC, Pascoe IG (2004) Unexpected ribosomal DNA internal transcribed spacer sequence variation within Erysiphe aquilegiae sensu lato. Fung Divers 16:1–10Google Scholar
  21. Dennis RWG (1960) British cup fungi and their allies. Ray Society, LondonGoogle Scholar
  22. Denton AL, McConaughy BL, Hall BD (1998) Usefulness of RNA polymerase II coding sequences for estimation of green plant phylogeny. Mol Biol Evol 15:1082–1085PubMedGoogle Scholar
  23. Douady CJ, Delsuc F, Boucher Y, Doolittle WF, Douzery EJP (2003) Comparison of the Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Mol Biol Evol 20:248–254PubMedCrossRefGoogle Scholar
  24. Duong ML, Lumyong S, Hyde KD, Jeewon R (2004) Emarcea castanopsicola gen. et sp. nov. from Thailand, a new xylariaceous taxon based on morphology and DNA sequences. Stud Mycol 50:253–260Google Scholar
  25. Eriksson O, Hawksworth DL (1993) Outline of the Ascomycetes—1993. Syst Ascomycetum 12:1–257Google Scholar
  26. Eriksson OE, Winka K (1997) Supraordinal taxa of Ascomycota. Myconet 1:1–16Google Scholar
  27. Eriksson OE (ed) (2006) Outline of Ascomycota—2006. Myconet 12:1–82Google Scholar
  28. Felsenstein J (1985) Confidence intervals on phylogenetics: an approach using bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  29. Freeman S, Minz D Jurkevitch E, Maymon M, Shabi E (2000) Molecular analyses of Colletotrichum species from almond and other fruits. Phytopathol 90:608–614CrossRefGoogle Scholar
  30. Frøslev TG, Matheny PB, Hibbett DS (2005) Lower level relationships in the mushroom genus Cortinarius (Basidiomycota, Agaricales): A comparison of RPB1, RPB2, and ITS phylogenies. Mol Phylogenet Evol 37:602–618PubMedCrossRefGoogle Scholar
  31. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microb 61:1323–1330Google Scholar
  32. Goh TK, Hanlin RT (1994) Ascomal development in Melanospora zamiae. Mycologia 86:357–370CrossRefGoogle Scholar
  33. Hall TA (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  34. Hansen K, LoBuglio KF, Pfister D (2005) Evolutionary relationships of the cup-fungus genus Peziza and Pezizaceae inferred from multiple nuclear genes: RPB2, β-tubulin, and LSU rDNA. Mol Phylogenet Evol 36:1–23PubMedCrossRefGoogle Scholar
  35. Hausner G, Reid J, Klassen GR (1993) On The Phylogeny of Ophiostoma, Ceratocystis s.s., Microascus, and relationships within Ophiostoma based on partial ribosomal DNA sequences. Can J Bot 71:1249–1265CrossRefGoogle Scholar
  36. Hirt RP, Logsdon JM Jr, Healy B, Dorey MW, Doolittle WF, Embley TM (1999) Microsporidia are related to fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc Nat Acad Sci USA 96:580–585PubMedCrossRefGoogle Scholar
  37. Hsieh HM, Ju YM, Rogers JD (2005) Molecular phylogeny of Hypoxylon and closely related genera. Mycologia 97:844–865PubMedCrossRefGoogle Scholar
  38. Huelsenbeck JP (1995) The performance of phylogenetic methods in simulation. Syst Biol 44:17–48CrossRefGoogle Scholar
  39. Huelsenbeck JP, Ronquist FR (2001) MRBAYES: Bayesian inference of phylogenetic trees. Biometrics 17:754–755Google Scholar
  40. Hunhndorf SM, Miller AN, Fernándes FA (2004a) Molecular systematics of the Sordariales: the order and the family Lasiosphaeriaceae redefined. Mycologia 96:368–387CrossRefGoogle Scholar
  41. Huhndorf SM, Miller AN, Fernández FA (2004b) Molecular systematics of the Coronophorales and new species of Bertia, Lasiobertia and Nitschkia. Mycol Res 108:1384–1398CrossRefGoogle Scholar
  42. Huhndorf SM, Fernández FA (2005) Teleomorph-anamorph connections: Chaetosphaeria raciborskii and related species, and their Craspedodidymum-like anamorphs. Fung Divers 19:23–49Google Scholar
  43. Huhndorf SM, Miller AN, Fernández FA, Lodge DJ (2005) Neotropical Ascomycetes 13. Cornipulvina and Erythromada, two new genera from the Caribbean and elsewhere. Fung Divers 20:59–69Google Scholar
  44. Issakainen J, Jalava J, Saari J, Campell CK (1999) Relationship of Scedosporium prolificans with Petriella confirmed by partial LSU rDNA sequences. Mycol Res 103:1179–1184CrossRefGoogle Scholar
  45. Jeewon R, Liew ECY, Hyde KD (2002) Phylogenetic relationships of Pestalotiopsis and allied genera inferred from ribosomal DNA sequences and morphological characters. Mol Phylogenet Evol 25:378–392PubMedCrossRefGoogle Scholar
  46. Jeewon R, Liew ECY, Hyde KD (2003) Molecular systematics of the Amphisphaeriaceae based on cladistics analyses of partial LSU rDNA gene sequences. Mycol Res 107:1392–1402PubMedCrossRefGoogle Scholar
  47. Jeewon R, Liew ECY, Hyde KD (2004) Phylogenetic evaluation of species nomenclature of Pestalotiopsis in relation to host association. Fung Divers 17:39–55Google Scholar
  48. Kauff F, Lutzoni F (2002) Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. Mol Phylogenet Evol 25:138–156PubMedCrossRefGoogle Scholar
  49. Kirk PM, Cannon PF, David JC, Stalpers JA (2001) Ainsworth & Bisby’s dictionary of the Fungi, 9th ed. CABI International University Press, Wallingford, UKGoogle Scholar
  50. Klenk HP, Zillig W, Lanzendörfer M, Grampp B, Palm P (1995) Location of protist lineages in a phylogenetic tree inferred from sequences of DNA-dependent RNA polymerases. Arch Protist145:221–230Google Scholar
  51. Kodsueb R, Jeewon R, Vijaykrishna D, McKenzie EHC, Lumyong P, Lumyong S, Hyde KD (2006) Systematic revision of Tubeufiaceae based on morphological and molecular data. Fung Divers 21:105–130Google Scholar
  52. Kohlmeyer J, Spatafora JW, Volkmann-Kohlmeyer B (2000) Lulworthiales, a new order of marine Ascomycota. Mycologia 92:453–458CrossRefGoogle Scholar
  53. Landvik S, Egger KN, Schumacher T (1997) Towards a subordinal classification of the Pezizales (Ascomycota): phylogenetic analysis of SSU rDNA sequences. Nord J Bot 17:403–418Google Scholar
  54. Liu Y, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Bio Evol 16:1799–1808Google Scholar
  55. Liu Y, Hall BD (2004) Body plan evolution of ascomycetes, as inferred from an RNA polymerase II phylogeny. Proc Natl Acad Sci USA 101:4507–4512PubMedCrossRefGoogle Scholar
  56. Lavoué S, Sullivan JP (2004) Simultaneous analysis of five molecular markers provides a well-supported phylogenetic hypothesis for the living bony-tongue fishes (Osteoglossomorpha: Teleostei). Mol Phylogenet Evol 33:171–185PubMedCrossRefGoogle Scholar
  57. Lumbsch HT (2000) Phylogeny of filamentous ascomycetes. Naturwissenchaften 87:335–342CrossRefGoogle Scholar
  58. Lumbsch HT, Schmitt H, Lindemuth R, Miller A, Mangold A, Fernandez F, Huhndorf S (2005) Performance of four ribosomal DNA regions to infer higher-level phylogenetic relationships of inoperculate euascomycetes (Leotiomyceta). Mol Phylogenet Evol 34:512–524PubMedCrossRefGoogle Scholar
  59. Lundqvist N (1972) Nordic Sordariaceae s. lat. Symbolae Botanicae Upsalienses 20:1–374Google Scholar
  60. Luttrell ES (1951) Taxonomy of the Pyrenomycetes. University Missouri Stud Sci Ser 24:1–120Google Scholar
  61. Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G, Dentinger B, Padamsee M, Hibbett D, James TY, Baloch E, Grube M, Reeb V, Hofstetter V, Schoch C, Arnold AE, Miadlikowska J, Spatafora J, Johnson D, Hambleton S, Crockett M, Shoemaker R, Sung GH, Lücking R, Lumbsch T, O’Donnell K, Binder M, Diederich P, Ertz D, Gueidan C, Hall B, Hansen K, Harris RC, Hosaka K, Lim YW, Liu Y, Matheny B, Nishida H, Pfister D, Rogers J, Rossman A, Schmitt I, Sipman H, Stone J, Sugiyama J, Yahr R, Vilgalys R (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot 91:1446–1480CrossRefGoogle Scholar
  62. Matheny PB (2005) Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe; Agaricales). Mol Phylogenet Evol 35:1–20PubMedCrossRefGoogle Scholar
  63. Miller JH (1949) A revision of the classification of the ascomycetes with special emphasis on the pyrenomycetes. Mycologia 41:99–127CrossRefGoogle Scholar
  64. Miller AN, Huhndorf SM (2005) Multi-gene phylogenies indicate ascomal wall morphology is a better predictor of phylogenetic relationships than ascospore morphology in the Sordariales (Ascomycota, Fungi). Mol Phylogent Evol 35:60–75CrossRefGoogle Scholar
  65. Mitchell JI, Roberts PJ, Moss ST (1995) Sequence or structure? a short review on the application of nucleic acid sequence information of fungal taxonomy. Mycologist 9:67–75Google Scholar
  66. Moncalvo JM, Vilgalys R, Redhead SA, Johnson JE, James TY, Aime CM, Hofstetter V, Verduin SJW, Larsson E, Baroni TJ, Thorn RG, Jacobsson S, Clemencon H, Miller OK Jr (2002) One hundred and seventeen clades of euagarics. Mol Phylogenet Evol 23:357–400PubMedCrossRefGoogle Scholar
  67. Munk A (1953) The system of the pyrenomycetes. Dansk Botanisk Arkiv 15:1–163Google Scholar
  68. Neuveglise C, Brygoo Y, Vercambre B, Riba G (1994) Comparative-analysis of molecular and biological characteristics of strains of Beauveria brongniartii isolated from insects. Mycol Res 98:322–328Google Scholar
  69. Nickerson J, Drouin G (2004) The sequence of the largest subunit of RNA polymerase II is a useful marker for inferring seed plant phylogeny. Mol Phylogenet Evol 31:403–415PubMedCrossRefGoogle Scholar
  70. Nylander JAA (2004) MrModeltest 2.1. Program distributed by the author. Evolutionary Biology Centre, Uppsala UniversityGoogle Scholar
  71. Parquey-Leduc A, Locuqin-Linard M (1976) L’ontogenie et la structure des peritheces de Faurelina fimigenes Locquin-Linard. Rev Mycol (Paris) 40:161–175Google Scholar
  72. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  73. Réblová M, Winka K (2001)Generic concepts and correlations in ascomycetes based on molecular and morphological data: Lecythothecium duriligni gen. et sp. nov. with a Sporidesmium anamorph, and Ascolacicola austriaca sp. nov. Mycologia 93:479–493CrossRefGoogle Scholar
  74. Reeb V, Lutzoni F, Roux C (2004) Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Mol Phylogenet Evol 2:1036–1060CrossRefGoogle Scholar
  75. Rehner SA, Samuels GJ (1995) Molecular systematics of the Hypocreales: a teleomorph gene phylogeny and the status of their anamorphs. Can J Bot 73:S816–S823Google Scholar
  76. Samuels GJ, Blackwell M (2001) Pyrenomycetes. In DJ McLaughlin, EG McLanghlin, PA Lemke (ed) The Mycota. vol. VII, Part A. Systematics and evolution. Springer-Verlag, Berlin, GermanyGoogle Scholar
  77. Sidow A, Thomas WK (1994) A molecular evolutionary framework for eukaryotic model organisms. Curr Biol 4:596–603PubMedCrossRefGoogle Scholar
  78. Silva-Hanlin DMW, Hanlin RT (1999) Small subunit ribosomal RNA gene phylogeny of several loculoascomycetes and its taxonomic implications. Mycol Res 103:153–160CrossRefGoogle Scholar
  79. Simmons MP, Pickett KM, Miya M (2004) How meaningful are Bayesian support values? Mol Biol Evol 21:188–199PubMedCrossRefGoogle Scholar
  80. Smith GJ, Liew ECY, Hyde KD (2003) The Xylariales: a monophyletic order contining 7 families. Fung Divers 13:175–208Google Scholar
  81. Spatafora JW (1995) Ascomal evolution of filamentous ascomycetes: evidence from molecular. Can J Bot S73:811–815Google Scholar
  82. Spatafora JW, Blackwell M (1993) Molecular systematics of unitunicate perithecial ascomycetes: the Clavicipitales–Hypocreales connection. Mycologia 85:912–922CrossRefGoogle Scholar
  83. Spatafora JW, Blackwell M (1994) Polyphyletic origins of ophiostomatoid fungi. Mycol Res 98:1–9CrossRefGoogle Scholar
  84. Spatafora JW, Volkmann-Kohlmeyer B, Kohlmeyer J (1998) Independent terrestrial origins of the Halosphaeriales (marine Ascomycota). Amer J Bot 85:1569–1580CrossRefGoogle Scholar
  85. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts, USAGoogle Scholar
  86. Tanabe Y, Saikawa M, Watanabe MM, Sugiyama J (2004) Molecular phylogeny of Zygomycota based on EF-1a and RPB1 sequences: limitations and utility of alternative markers to rDNA. Mol Phylogenet Evol 30:438–449PubMedCrossRefGoogle Scholar
  87. Thell A, Feuerer T, Kärnefelt I, Myllys L, Stenroos S (2004) Monophyletic groups within the Parmeliaceae identified by ITS rDNA, β-tubulin and GAPDH sequences: Mycol Progress 3:297–314CrossRefGoogle Scholar
  88. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  89. Thorley JL, Wilkinson M (2000) The RadCon manual 1.1.2. Bristol University, UKGoogle Scholar
  90. Tsui CKM, Berbee ML, Jeewon R, Hyde KD (2006) Molecular phylogeny of Dictyosporium and allied genera inferred from ribosomal DNA. Fung Divers 21:157–166Google Scholar
  91. Vijaykrishna D, Jeewon R, Hyde KD (2006) Fusoidispora aquatica: New freshwater ascomycetes from Hong Kong based on morphology and molecules. Sydowia 57:267–280Google Scholar
  92. Villegas M, Cifuentes J, Torres AE (2005) Sporal characters in Gomphales and their significance for phylogenetics. Fung Divers 18:157–175Google Scholar
  93. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246PubMedGoogle Scholar
  94. Wang Y, Guo LD, Hyde KD (2005) Taxonomic placement of sterile morphotypes of endophytic fungi from Pinus tabulaeformis (Pinaceae) in northeast China based on rDNA sequences. Fung Divers 20:235–260Google Scholar
  95. Wiens JJ (2003) Missing data, incomplete taxa, and phylogenetic accuracy. Syst Biol 52:528–538PubMedCrossRefGoogle Scholar
  96. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetic. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  97. Witthuhn RC, Wingfield BD, Wingfield MJ, Harrington TC (1999) PCR-based identification and phylogeny of species of Ceratocystis sensu stricto. Mycol Res 103:743–749CrossRefGoogle Scholar
  98. Wyk PWJ van, Wingfield MJ, Wyk PS van (1991) Ascospore development on Ceratocystis moniliformis. Mycol Res 95:96–103Google Scholar
  99. Zhang N, Blackwell M (2002) Molecular phylogeny of Melanospora corda and similar pyrenomycetous fungi. Mycol Res 106:148–155CrossRefGoogle Scholar
  100. Zhang L, Yang J, Yang Z (2004) Molecular phylogeny of eastern Asian species of Amanita (Agaricales, Basidiomycota): taxonomic and biogeographic implications. Fung Divers 17:219–238Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Alvin M. C. Tang
    • 1
    Email author
  • Rajesh Jeewon
    • 1
  • Kevin D. Hyde
    • 1
  1. 1.Centre for Research in Fungal Diversity, Department of Ecology & BiodiversityThe University of Hong KongHong Kong, SARRepublic of China

Personalised recommendations