Antonie van Leeuwenhoek

, Volume 90, Issue 4, pp 343–360 | Cite as

Bacterial endosymbioses in Solemya (Mollusca: Bivalvia)—Model systems for studies of symbiont–host adaptation

  • Frank J. Stewart
  • Colleen M. CavanaughEmail author
Original Paper


Endosymbioses between chemosynthetic bacteria and marine invertebrates are remarkable biological adaptations to life in sulfide-rich environments. In these mutualistic associations, sulfur-oxidizing chemoautotrophic bacteria living directly within host cells both aid in the detoxification of toxic sulfide and fix carbon to support the metabolic needs of the host. Though best described for deep-sea vents and cold seeps, these symbioses are ubiquitous in shallow-water reducing environments. Indeed, considerable insight into sulfur-oxidizing endosymbioses in general comes from detailed studies of shallow-water protobranch clams in the genus Solemya. This review highlights the impressive body of work characterizing bacterial symbiosis in Solemya species, all of which are presumed to harbor endosymbionts. In particular, studies of the coastal Atlantic species Solemya  velum and its larger Pacific congener Solemya  reidi are the foundation for our understanding of the metabolism and physiology of marine bivalve symbioses, which are now known to occur in five families. Solemya  velum, in particular, is an excellent model organism for symbiosis research. This clam can be collected easily from coastal eelgrass beds and maintained in laboratory aquaria for extended periods. In addition, the genome of the S. velum symbiont is currently being sequenced. The integration of genomic data with additional experimental analyses will help reveal the molecular basis of the symbiont–host interaction in Solemya, thereby complementing the wide array of research programs aimed at better understanding the diverse relationships between bacterial and eukaryotic cells.


Symbiosis Sulfur oxidation Gamma Proteobacteria Protobranch Intracellular Maternal transmission Y-shaped burrow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank our many colleagues for stimulating discussions over the years on solemyids and their symbionts, and especially J. Gijs Kuenen who was instrumental in the discovery of chemosynthetic bacteria in Solemya  velum and for his encouragement in the early stages of this research. Research in my laboratory on chemosynthetic symbioses has been supported by grants from NSF (Cell Biology, Ocean Science Division-Biological Oceanography, and RIDGE) and by a graduate fellowship from the NIH Genetics and Genomics Training Grant (FJS). We dedicate this paper to J. Gijs Kuenen on the embarkation (and continuation) of his hobby-de Microbiologie!


  1. Anderson AE, Childress JJ, Favuzzi JA (1987) Net uptake of CO2 driven by sulfide and thiosulfate oxidation in the bacterial symbiont-containing clam Solemya  reidi. J Exp Biol 133:1–31Google Scholar
  2. Barry JP, Buck KR, Goffredi SK, Hashimoto J (2000) Ultrastructure studies of two chemosynthetic invertebrate–bacterial symbioses (Lamellibrachia sp. and Acharax sp.) from the Hatsushima cold seeps in Sagami Bay, Japan. Jamstec J Deep Sea Res 16:91–99Google Scholar
  3. Bromley RG (1996) Trace fossils: biology, taphonomy, and applications. Chapman and Hall, LondonGoogle Scholar
  4. Cary SC (1994) Vertical transmission of a chemoautotrophic symbiont in the protobranch bivalve, Solemya reidi. Mol Mar Biol Biotechnol 3:121–130PubMedGoogle Scholar
  5. Cavanaugh CM (1980) Symbiosis of chemoautotrophic bacteria and marine-invertebrates. Biol Bull 159:457–457Google Scholar
  6. Cavanaugh CM (1983) Symbiotic chemoautotrophic bacteria in marine-invertebrates from sulfide-rich habitats. Nature 302:58–61CrossRefGoogle Scholar
  7. Cavanaugh CM (1985) Symbiosis of chemoautotrophic bacteria and marine invertebrates. PhD Thesis, Harvard UniversityGoogle Scholar
  8. Cavanaugh CM, Robinson JJ (1996) CO2 fixation in chemoautotroph–invertebrate symbioses: expression of Form I and Form II RubisCO. In: Lidstrom ME, Tabita FR (eds) Microbial growth on C1 compounds. Kluwer Academic PublishersGoogle Scholar
  9. Cavanaugh CM, Abbott MS, Veenhuis M (1988) Immunochemical localization of ribulose-1,5-bisphosphate carboxylase in the symbiont-containing gills of Solemya  velum (Bivalvia, Mollusca). P Natl Acad Sci USA 85:7786–7789CrossRefGoogle Scholar
  10. Cavanaugh CM, McKiness ZP, Newton ILG, Stewart FJ (2005) Marine chemosynthetic symbioses. In: Dworkin M et al (eds) The prokaryotes: an evolving electronic resource for the microbiological community. Release 3.20. Springer, New York,
  11. Chen C, Rabourdin B, Hammen CS (1987) The effect of hydrogen-sulfide on the metabolism of Solemya  velum and enzymes of sulfide oxidation in gill tissue. Comp Biochem Phys B 88:949–952CrossRefGoogle Scholar
  12. Clark MA, Moran NA, Baumann P (1999) Sequence evolution in bacterial endosymbionts having extreme base compositions. Mol Biol Evol 16:1586–1598PubMedGoogle Scholar
  13. Conway N, Capuzzo JM (1991) Incorporation and utilization of bacterial lipids in the Solemya  velum symbiosis. Mar Biol 108:277–291CrossRefGoogle Scholar
  14. Conway NM, Capuzzo JEM (1992) High taurine levels in the Solemya  velum symbiosis. Comp Biochem Phys B 102:175–185CrossRefGoogle Scholar
  15. Conway N, Capuzzo JM, Fry B (1989) The role of endosymbiotic bacteria in the nutrition of Solemya  velum—evidence from a stable isotope analysis of endosymbionts and host. Limnol Oceanogr 34:249–255CrossRefGoogle Scholar
  16. Conway NM, Howes BL, Capuzzo JEM, Turner RD, Cavanaugh CM (1992) Characterization and site description of Solemya  borealis (Bivalvia, Solemyidae), another bivalve-bacteria symbiosis. Mar Biol 112:601–613CrossRefGoogle Scholar
  17. Degnan PH, Lazarus AB, Brock CD, Wernegreen JJ (2004) Host–symbiont stability and fast evolutionary rates in an ant–bacterium association: cospeciation of Camponotus species and their endosymbionts, Candidatus Blochmannia. Syst Biol 53:95–110PubMedCrossRefGoogle Scholar
  18. Distel DL (1998) Evolution of chemoautotrophic endosymbioses in bivalves—bivalve-bacteria chemosymbioses are phylogenetically diverse but morphologically similar. Bioscience 48:277–286CrossRefGoogle Scholar
  19. Distel DL, Felbeck H, Cavanaugh CM (1994) Evidence for phylogenetic congruence among sulfur-oxidizing chemoautotrophic bacterial endosymbionts and their bivalve hosts. J Mol Evol 38:533–542CrossRefGoogle Scholar
  20. Doeller JE, Kraus DW, Colacino JW, Wittenberg JB (1988) Gill hemoglobin may deliver sulfide to bacterial symbionts of Solemya  velum (Bivalvia, Mollusca). Boil Bull 175:388–396Google Scholar
  21. Eisen JA, Smith SW, Cavanaugh CM (1992) Phylogenetic relationships of chemoautotrophic bacterial symbionts of Solemya  velum Say (Mollusca-Bivalvia) determined by 16S ribosomal-RNA gene sequence-analysis. J Bacteriol 174:3416–3421PubMedGoogle Scholar
  22. Felbeck H (1983) Sulfide oxidation and carbon fixation by the gutless clam Solemya  reidi—an animal–bacteria symbiosis. J Comp Physiol 152:3–11Google Scholar
  23. Felbeck H, Childress JJ, Somero GN (1981) Calvin–Benson cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats. Nature 293:291–293CrossRefGoogle Scholar
  24. Felbeck H, Childress JJ, Somero GN (1983) Biochemical interactions between molluscs and their algal and bacterial symbionts. In: Hochachka PW (ed) The mollusca: environmental biochemistry and physiology (Mollusca), vol 2. Academic Press, New YorkGoogle Scholar
  25. Fisher CR, Childress JJ (1986) Translocation of fixed carbon from symbiotic bacteria to host tissues in the gutless bivalve Solemya  reidi. Mar Biol 93:59–68CrossRefGoogle Scholar
  26. Frey RW (1967) The lebensspuren of some common marine invertebrates near Beaufort, North Carolina. I. Pelecypod burrows. J Paleontol 42:570–574Google Scholar
  27. Goedert JL, Squires RL (1993) First oligocene records of Calyptogena (Bivalvia: Vesicomyidae). Veliger 36:72–77Google Scholar
  28. Goericke R, Montoya JP, Fry B (1994) Physiology of isotopic fractionation in algae and cyanobacteria. In: Lajtha K, Michener RH (eds) Stable isotopes in ecology and environmental science. Blackwell Scientific Publications, BostonGoogle Scholar
  29. Gustafson RG, Lutz RA (1992) Larval and early postlarval development of the protobranch bivalve Solemya  velum (Mollusca, Bivalvia). J Mar Biol Assoc UK 72:383–402CrossRefGoogle Scholar
  30. Gustafson RG, Reid RGB (1988a) Association of bacteria with larvae of the gutless protobranch bivalve Solemya  reidi (Cryptodonta, Solemyidae). Mar Biol 97:389–401CrossRefGoogle Scholar
  31. Gustafson RG, Reid RGB (1988b) Larval and post-larval morphogenesis in the gutless protobranch bivalve Solemya  reidi (Cryptodonta, Solemyidae). Mar Biol 97:373–387CrossRefGoogle Scholar
  32. Henry T, Garcia-del Portillo F, Gorvel JP (2005) Identification of Salmonella functions critical for bacterial cell division within eukaryotic hosts. Mol Microbiol 56:252–267PubMedCrossRefGoogle Scholar
  33. Imhoff JF, Sahling H, Süling J, Thomas K (2003) 16S rDNA-based phylogeny of sulphur-oxidising bacterial endosymbionts in marine bivalves from cold-seep habitats. Mar Ecol Prog Ser 249:39–51Google Scholar
  34. Joyner JL, Peyer SM, Lee RW (2003) Possible roles of sulfur-containing amino acids in a chemoautotrophic bacterium–mollusc symbiosis. Biol Bull 205:331–338PubMedGoogle Scholar
  35. Kraus DW, Doeller JE, Wittenberg JB (1990) Sulfide-mediated reduction of cytochrome-c in the gills of Solemya  reidi. Am Zool 30:A16–A16Google Scholar
  36. Kraus DW, Doeller JE, Wittenberg JB (1992) Hydrogen sulfide reduction of symbiont cytochrome-c(552) in gills of Solemya  reidi (mollusca). Biol Bull 182:435–443Google Scholar
  37. Kraus DW, Doeller JE, Powell CS (1996) Sulfide may directly modify cytoplasmic hemoglobin deoxygenation in Solemya  reidi gills. J Exp Biol 199:1343–1352PubMedGoogle Scholar
  38. Krueger DM, Cavanaugh CM (1997) Phylogenetic diversity of bacterial symbionts of Solemya hosts based on comparative sequence analysis of 16S rRNA genes. Appl Environ Microbiol 63:91–98PubMedGoogle Scholar
  39. Krueger DM, Gallager SM, Cavanaugh CM (1992) Suspension feeding on phytoplankton by Solemya  velum, a symbiont-containing clam. Mar Ecol Prog Ser 86:145–151Google Scholar
  40. Krueger DM, Dubilier N, Cavanaugh CM (1996a) Chemoautotrophic symbiosis in the tropical clam Solemya  occidentalis (Bivalvia: Protobranchia): ultrastructural and phylogenetic analysis. Mar Biol 126:55–64CrossRefGoogle Scholar
  41. Krueger DM, Gustafson RG, Cavanaugh CM (1996b) Vertical transmission of chemoautotrophic symbionts in the bivalve Solemya  velum (Bivalvia: Protobranchia). Biol Bull 190:195–202Google Scholar
  42. Kuznetsov AP, Ota S, Endow K (1990) Morphofunctional consequences of bacterial symbiotrophy in Solemya (Petrasma) pusilla (Protobranchia, Bivalvia) from the Sagami Bay (Central Japan). Izy AN SSSR Biol 6:895–903Google Scholar
  43. Lee RW, Childress JJ (1994) Assimilation of inorganic nitrogen by marine-invertebrates and their chemoautotrophic and methanotrophic symbionts. Appl Environ Microbiol 60:1852–1858PubMedGoogle Scholar
  44. Lee RW, Thuesen EV, Childress JJ (1992) Ammonium and free amino-acids as nitrogen-sources for the chemoautotrophic symbiosis Solemya  reidi Bernard (Bivalvia, Protobranchia). J Exp Mar Biol Ecol 158:75–91CrossRefGoogle Scholar
  45. Lee RW, Childress JJ, Desaulniers NT (1997) The effects of exposure to ammonia on ammonia and taurine pools of the symbiotic clam Solemya  reidi. J Exp Biol 200:2797–2805PubMedGoogle Scholar
  46. Lee RW, Robinson JJ, Cavanaugh CM (1999) Pathways of inorganic nitrogen assimilation in chemoautotrophic bacteria–marine invertebrate symbioses: expression of host and symbiont glutamine synthetase. J Exp Biol 202:289–300PubMedGoogle Scholar
  47. Levinton JS (1977) Ecology of shallow water deposit-feeding communities Quisset Harbor, Massachusetts. In: Coull BC (ed) Ecology of marine benthos. University of South Carolina Press, Columbia, South CarolinaGoogle Scholar
  48. Mangum CP, Miller KI, Scott JL, Van Holde KE, Morse MP (1987) Bivalve hemocyanin: structural, functional, and phylogenetic relationships. Biol Bull 173:205–221Google Scholar
  49. Margolin W (2000) Themes and variations in prokaryotic cell division. FEMS Microbiol Rev 24:531–548PubMedCrossRefGoogle Scholar
  50. Mattick KL, Jorgensen F, Legan JD, Cole MB, Porter J, Lappin-Scott HM, Humphrey TJ (2000) Survival and filamentation of Salmonella enterica serovar enteritidis PT4 and Salmonella enterica serovar typhimurium DT104 at low water activity. Appl Environ Microbiol 66:1274–1279PubMedCrossRefGoogle Scholar
  51. Mileykovskaya E, Sun Q, Margolin W, Dowhan W (1998) Localization and function of early cell division proteins in filamentous Escherichia  coli cells lacking phosphatidylethanolamine. J Bacteriol 180:4252–4257PubMedGoogle Scholar
  52. Mira A, Moran NA (2002) Estimating population size and transmission bottlenecks in maternally transmitted endosymbiotic bacteria. Microbial Ecol 44:137–143CrossRefGoogle Scholar
  53. Mitchell TA, Cavanaugh CM (1983) Numbers of symbiotic bacteria in the gill tissue of the bivalve Solemya  velum say. Biol Bull 165:521–521Google Scholar
  54. Moran NA (2002) Microbial minimalism: genome reduction in bacterial pathogens. Cell 108:583–586PubMedCrossRefGoogle Scholar
  55. Moran NA, Mira A (2001) The process of genome shrinkage in the obligate symbiont Buchnera  aphidicola. Genome Biol 2:54.1–54.12CrossRefGoogle Scholar
  56. Moran NA, Wernegreen JJ (2000) Lifestyle evolution in symbiotic bacteria: insights from genomics. Trends Ecol Evol 15:321–326PubMedCrossRefGoogle Scholar
  57. Moran NA, Munson MA, Baumann P, Ishikawa H (1993) A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc R Soc Lond B Biol Sci 253:167–171Google Scholar
  58. Owen G (1961) Note on habits and nutrition of Solemya  parkinsoni (Protobranchia-Bivalvia). Q J Microsc Sci 102:15Google Scholar
  59. Peek AS, Vrijenhoek RC, Gaut BS (1998) Accelerated evolutionary rate in sulfur-oxidizing endosymbiotic bacteria associated with the mode of symbiont transmission. Mol Biol Evol 15:1514–1523PubMedGoogle Scholar
  60. Pelseneer P (1891) Contribution à l’ etude des Lamellibranches. Arch Biol Paris 11:147–312Google Scholar
  61. Pojeta J (1988) The origin and Paleozoic diversification of solemyoid pelecypods. New Mexico Bureau of Mines & Miner Resour Memoir 44:201–270Google Scholar
  62. Powell MA, Somero GN (1985) Sulfide oxidation occurs in the animal tissue of the gutless clam, Solemya  reidi. Biol Bull 169:164–181Google Scholar
  63. Powell MA, Somero GN (1986) Hydrogen-sulfide oxidation is coupled to oxidative-phosphorylation in mitochondria of Solemya  reidi. Science 233:563–566CrossRefPubMedGoogle Scholar
  64. Rainer SF, Wadley VA (1991) Abundance, growth and production of the bivalve Solemya sp, a food source for juvenile rock lobsters in a seagrass community in western Australia. J Exp Mar Biol Ecol 152:201–223CrossRefGoogle Scholar
  65. Reid RGB (1980) Aspects of the biology of a gutless species of Solemya (Bivalvia, Protobranchia). Can J Zool 58:386–393CrossRefGoogle Scholar
  66. Reid RGB, Bernard FR (1980) Gutless bivalves. Science 208:609–610CrossRefPubMedGoogle Scholar
  67. Reid RGB, Brand DG (1987) Observations on Australian Solemyidae. J Malac Soc Aust 8:41–50Google Scholar
  68. Robinson JL, Cavanaugh CM (1995) RubisCO in chemoautotrophic symbioses: implications for the interpretation of stable carbon isotope values. Limnol Oceanogr 40:1496–1502CrossRefGoogle Scholar
  69. Rosenberger CM, Finlay BB (2002) Macrophages inhibit Salmonella typhimurium replication through MEK/ERK kinase and phagocyte NADPH oxidase activities. J Biol Chem 277:18753–18762PubMedCrossRefGoogle Scholar
  70. Rosenberger CM, Gallo RL, Finlay BB (2004) Interplay between antibacterial effectors: a macrophage antimicrobial peptide impairs intracellular Salmonella replication. Proc Natl Acad Sci USA 101:2422–2427PubMedCrossRefGoogle Scholar
  71. Sanders N, Childress JJ, McMahon BR (1998) Oxygen transport by the hemocyanin of the protobranch mollusc Solemya reidi. Mar Biol 131:293–299CrossRefGoogle Scholar
  72. Schwedock J, Harmer TL, Scott KM, Hektor HJ, Seitz AP, Fontana MC, Distel DL, Cavanaugh CM (2004) Characterization and expression of genes from the RubisCO gene cluster of the chemoautotrophic symbiont of Solemya  velum: cbbLSQO. Arch Microbiol 182:18–29PubMedCrossRefGoogle Scholar
  73. Scott KM (2005) Allometry of gill weights, gill surface areas, and foot biomass δ13C values of the chemoautotroph-bivalve symbiosis Solemya  velum. Mar Biol 147:935–941CrossRefGoogle Scholar
  74. Scott KM, Schwedock J, Schrag DP, Cavanaugh CM (2004) Influence of form IA RubisCO and environmental dissolved inorganic carbon on the δ13C of the clam-chemoautotroph symbiosis Solemya  velum. Environ Microbiol 6:1210–1219PubMedCrossRefGoogle Scholar
  75. Stanley SM (1970) Shell form and life habits of the Bivalvia. Geol Soc Am Mem 125:119–121Google Scholar
  76. Stewart FJ, Newton ILG, Cavanaugh CM (2005) Chemosynthetic endosymbioses: adaptations to oxic–anoxic interfaces. Trends Microbiol 13:439–448PubMedCrossRefGoogle Scholar
  77. Vokes HE (1955) Notes on tertiary and recent Solemyacidae. J Paleontol 29:534–545Google Scholar
  78. Wernegreen JJ (2002) Genome evolution in bacterial endosymbionts of insects. Nat Rev Genet 3:850–861PubMedCrossRefGoogle Scholar
  79. Yonge CM (1939) The protobranchiate Mollusca: a functional interpretation of their structure and evolution. Philos Trans R Soc Lond Ser B 230:79–147Google Scholar
  80. Zak O, Kradolfer F (1979) Effects of subminimal inhibitory concentrations of antibiotics in experimental infections. Rev Infect Dis 1:862–879PubMedGoogle Scholar
  81. Zardus JD (2002) Protobranch bivalves. In: Southward AJ, Tyler PA, Young CM, Fuiman LA (eds) Advances in marine biology, vol 42. Academic Press, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Department of Organismic and Evolutionary Biology, The Biological LaboratoriesHarvard UniversityCambridgeUSA

Personalised recommendations