Advertisement

Antonie van Leeuwenhoek

, Volume 90, Issue 4, pp 391–418 | Cite as

Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status

  • Antonius J. A. van Maris
  • Derek A. Abbott
  • Eleonora Bellissimi
  • Joost van den Brink
  • Marko Kuyper
  • Marijke A. H. Luttik
  • H. Wouter Wisselink
  • W. Alexander Scheffers
  • Johannes P. van Dijken
  • Jack T. Pronk
Original Paper

Abstract

Fuel ethanol production from plant biomass hydrolysates by Saccharomyces cerevisiae is of great economic and environmental significance. This paper reviews the current status with respect to alcoholic fermentation of the main plant biomass-derived monosaccharides by this yeast. Wild-type S. cerevisiae strains readily ferment glucose, mannose and fructose via the Embden–Meyerhof pathway of glycolysis, while galactose is fermented via the Leloir pathway. Construction of yeast strains that efficiently convert other potentially fermentable substrates in plant biomass hydrolysates into ethanol is a major challenge in metabolic engineering. The most abundant of these compounds is xylose. Recent metabolic and evolutionary engineering studies on S. cerevisiae strains that express a fungal xylose isomerase have enabled the rapid and efficient␣anaerobic fermentation of this pentose. l-Arabinose fermentation, based on the expression of a prokaryotic pathway in S. cerevisiae, has also been established, but needs further optimization before it can be considered for industrial implementation. In addition to these already investigated strategies, possible approaches for metabolic engineering of galacturonic acid and rhamnose fermentation by S. cerevisiae are discussed. An emerging and major challenge is to achieve the rapid transition from proof-of-principle experiments under ‘academic’ conditions (synthetic media, single substrates or simple substrate mixtures, absence of toxic inhibitors) towards efficient conversion of complex industrial substrate mixtures that contain synergistically acting inhibitors.

Keywords

Arabinose Ethanol Galacturonic acid Hydrolysate Rhamnose Xylose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The research group of JTP is part of the Kluyver Centre for Genomics of Industrial Fermentation, which is supported by the Netherlands Genomics Initiative. HWW is supported by the B-Basic Programme, JvdB by the IOP Genomics Programme and DAA by Tate & Lyle Ingredients Americas.

References

  1. Aarnio TH, Suihko ML, Kauppinen VS (1991) Isolation of acetic acid-tolerant bakers-yeast variants in a turbidostat. Appl Biochem Biotechnol 27:55–63Google Scholar
  2. Albers E, Larsson C, Lidén G, Niklasson C, Gustafsson L (1996) Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation. Appl Environ Microbiol 62:3187–3195PubMedGoogle Scholar
  3. Andreasen AA, Stier TJ (1953) Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium. J Cell Physiol 41:23–36Google Scholar
  4. Andreasen AA, Stier TJ (1954) Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium. J Cell Physiol 43:271–281Google Scholar
  5. Aristidou A, Penttilä M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11:187–198PubMedGoogle Scholar
  6. Baciu IE, Jördening HJ (2004) Kinetics of galacturonic acid release from sugar-beet pulp. Enzyme Microb Technol 34:505–512Google Scholar
  7. Bakker BM, Bro C, Kötter P, Luttik MAH, van Dijken JP, Pronk JT (2000) The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J Bacteriol 182:4730–4737PubMedGoogle Scholar
  8. Bakker BM, Overkamp KM, van Maris AJ, Kötter P, Luttik MA, van Dijken JP, Pronk JT (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 25:15–37PubMedGoogle Scholar
  9. Baldoma L, Aguilar J (1988) Metabolism of l-fucose and l-rhamnose in Escherichia coli: aerobic-anaerobic regulation of l-lactaldehyde dissimilation. J Bacteriol 170:416–421PubMedGoogle Scholar
  10. Baldomá L, Badia J, Sweet G, Aguilar J (1990). Cloning, mapping and gene-product identification of rha T from Escherichia coli K12. FEMS Microbiol Lett 72:103–108Google Scholar
  11. Barnett JA, Payne RW, Yarrow D (1990) Yeasts; Characteristics and identification. Cambridge University Press, Cambridge, UK. ISBN 0-521-35056-5Google Scholar
  12. Becker J, Boles E (2003) A modified Saccharomyces cerevisiae strain that consumes l-arabinose and produces ethanol. Appl Environ Microbiol 69:4144–4150PubMedGoogle Scholar
  13. Bigg GR, Jickells TD, Liss PS, Osborn TJ (2003) The role of the oceans in climate. Int J Climatol 23:1127–1159Google Scholar
  14. Blanco P, Sieiro C, Díaz A, Villa TG (1994) Production and partial characterization of an endopolygalacturonase from Saccharomyces cerevisiae. Can J Microbiol 40:974–977PubMedGoogle Scholar
  15. Blank LM, Lehmbeck F, Sauer U (2005) Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Res 5:545–558PubMedGoogle Scholar
  16. Blow DM, Hartley BS, Henrick K (1990) Xylose isomerase mutants. Pat. no. WO 9000196. Appl. no. 89-GB748Google Scholar
  17. Boles E, Hollenberg CP (1997) The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21:85–111PubMedGoogle Scholar
  18. Brandberg T, Sanandaji N, Gustafsson L, Franzén CJ (2005) Continuous fermentation of undetoxified dilute acid lignocellulose hydrolysate by Saccharomyces cerevisiae ATCC 96581 using cell recirculation. Biotechnol Prog 21:1093–1101PubMedGoogle Scholar
  19. Bro C, Knudsen S, Regenberg B, Olsson L, Nielsen J (2005) Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl Environ Microbiol 71:6465–6472PubMedGoogle Scholar
  20. Bruinenberg PM, de Bot PHM, van Dijken JP, Scheffers WA (1983a) The role of the redox balance in the anaerobic fermentation of xylose by yeasts. Eur J Appl Microbiol Biotechnol 18:287–292Google Scholar
  21. Bruinenberg PM, de Bot PHM, van Dijken JP, Scheffers WA (1984) NADH-linked aldose reductase: the key to ethanolic fermentation of xylose by yeasts. Appl Microbiol Biotechnol 19:256–260Google Scholar
  22. Bruinenberg PM, van Dijken JP, Scheffers WA (1983b) An enzymic analysis of NADPH production and consumption in Candida utilis. J Gen Microbiol 129:965–971Google Scholar
  23. Buchert J, Puls J, Poutanen K (1989) The use of steamed hemicellulose as substrate in microbial conversions. Appl Biochem Biotechnol 20–1:309–318Google Scholar
  24. Casal M, Cardoso H, Leão C (1996) Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae. Microbiology 142:1385–1390PubMedGoogle Scholar
  25. Chen Z, Ho NWY (1993) Cloning and improving the expression of Pichia stipitis xylose reductase gene in Saccharomyces cerevisiae. Appl Biochem Biotechnol 39–40:135–147PubMedCrossRefGoogle Scholar
  26. Chiang GC, Knight SG (1960) A new pathway of pentose metabolism. Biochem Biophys Res Commun 3:554–559PubMedGoogle Scholar
  27. Claassen PAM, van Lier JB, Lopez-Cóntreras AM, van Niel EWJ, Sijtsma L, Stams AJM, de Vries SS, Weusthuis RA (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52:741–755Google Scholar
  28. Demain AL, Newcomb M, Wu JHD (2005) Cellulase, Clostridia, and ethanol. Microbiol Mol Biol Rev 69:124–154PubMedGoogle Scholar
  29. Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266PubMedGoogle Scholar
  30. Dien BS, Kurtzman CP, Saha BC, Bothast RJ (1996) Screening for l-arabinose fermenting yeasts. Appl Biochem Biotechnol 57–58:233–242PubMedCrossRefGoogle Scholar
  31. Domingues L, Dantas MM, Lima N, Teixeira JA (1999a) Continuous ethanol fermentation of lactose by a recombinant flocculating Saccharomyces cerevisiae strain. Biotechnol Bioeng 64:692–697Google Scholar
  32. Domingues L, Teixeira JA, Lima N (1999b) Construction of a flocculent Saccharomyces cerevisiae fermenting lactose. Appl Microbiol Biotechnol 51:621–626Google Scholar
  33. Doran JB, Cripe J, Sutton M, Foster B (2000) Fermentations of pectin-rich biomass with recombinant bacteria to produce fuel ethanol. Appl Biochem Biotechnol 84–86:141–152PubMedGoogle Scholar
  34. Doran JB, Foster B (2000) Ethanol production from sugar beet pulp using engineered bacteria. Int Sugar J␣102:336–340Google Scholar
  35. Douglas HC, Hawthorne DC (1964) Enzymatic expression and genetic linkage of genes controlling galactose utilization in Saccharomyces. Genetics 49:837–844PubMedGoogle Scholar
  36. Eklund T (1983) The antimicrobial effect of dissociated and undissociated sorbic acid at different pH levels. J Appl Bacteriol 54:383–389PubMedGoogle Scholar
  37. Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66:3381–3386PubMedGoogle Scholar
  38. Fellows PJ, Worgan JT (1986) Studies on the growth of Candida utilis on d-galacturonic acid and the products of pectin hydrolysis. Enzyme Microb Technol 9:537–540Google Scholar
  39. Flores CL, Rodriguez C, Petit T, Gancedo C (2000) Carbohydrate and energy-yielding metabolism in non-conventional yeasts. FEMS Microbiol Rev 24:507–529PubMedGoogle Scholar
  40. Fredlund E, Blank LM, Schnürer J, Sauer U, Pasoth V (2002) Oxygen- and glucose- dependent regulation of central carbon metabolism in Pichia anomala. Appl Environ Microbiol 70:5905–5911Google Scholar
  41. Freeman TL, San Francisco MJ (1994) Cloning of a galacturonic acid uptake gene from Erwinia chrysanthemi EC16. FEMS Microbiol Lett 118:101–106Google Scholar
  42. Fukazawa C (1989) Cloning of a gene encoding glucose isomerase from Streptomyces and its expression. Pat. no. JP 01137979. Appl. no. 87-295739Google Scholar
  43. Gainvors A, Belarbi A (1995) Detection method for polygalacturonase-producing strains of Saccharomyces cerevisiae. Yeast 11:1493–1499PubMedGoogle Scholar
  44. Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628PubMedGoogle Scholar
  45. Gárdonyi M, Hahn-Hägerdal B (2003) The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae. Enzyme Microb Technol 32:252–259Google Scholar
  46. Gong CS, Chen LF, Flickinger MC, Chiang LC, Tsao GT (1981a). Production of ethanol from d-xylose by using d-xylose isomerase and yeasts. Appl Environ Microbiol 41:430–436Google Scholar
  47. Gong CS, McCracken LD, Tsao GT (1981b). Direct fermentation of d-xylose to ethanol by a xylose-fermentating yeast mutant, Candida sp Xf217. Biotechnol Lett 3:245–250Google Scholar
  48. Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD (2005) Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 1–11Google Scholar
  49. Greene DL, Hopson JL, Li J (2002) Running into and out of oil: scenarios of global oil use and resource depletion to 2050. 1–65. 2002. U.S. Dept. of Energy. Tennessee, Knoxville, DE-AC05-00OR22725Google Scholar
  50. Grohmann K, Bothast RJ (1994). Pectin rich residues generated by processing of citrus fruits, apples, and sugar beets. Enzymatic hydrolysis and biological conversion to value-added products. Enzymatic Conversion of Biomass for Fuels Production, Oxford University Press, Oxford, UK pp 372–390Google Scholar
  51. Grohmann K, Manthey JA, Cameron RG, Buslig BS (1998) Fermentation of galacturonic acid and pectin-rich materials to ethanol by genetically modified strains of Erwinia. Biotechnol Lett 20:195–200Google Scholar
  52. Gunsalus IC, Horecker BL, Wood WA (1955) Pathways of carbohydrate metabolism in microorganisms. Bacteriol Rev 19:79–128PubMedGoogle Scholar
  53. Hahn-Hägerdal B, Linden T, Senac T, Skoog K (1991) Ethanolic fermentation of pentoses in lignocellulose hydrolyzates. Appl Biochem Biotechnol 28–29:131–144PubMedGoogle Scholar
  54. Harhangi HR, Akhmanova AS, Emmens R, van der Drift C, de Laat WT, van Dijken JP, Jetten MS, Pronk JT, Op den Camp HJ, (2003) Xylose metabolism in the anaerobic fungus Piromyces sp. E2 follows the bacterial pathway. Arch Microbiol 180:134–141PubMedGoogle Scholar
  55. Hazan R, Levine A, Abeliovich H (2004) Benzoic acid, a weak organic acid food preservative, exerts specific effects on intracellular membrane trafficking pathways in Saccharomyces cerevisiae. Appl Environ Microbiol 70:4449–4457PubMedGoogle Scholar
  56. Heipieper HJ, Weber F, Sikkema J, Keweloh H, de Bont JAM (1994) Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol 12:409–415Google Scholar
  57. Heredia CF, Sols A, DelaFuente G (1968) Specificity of the constitutive hexose transport in yeast. Eur J Biochem 5:321–329PubMedGoogle Scholar
  58. Ho NWY, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859PubMedGoogle Scholar
  59. Ho NWY, Stevis P, Rosenfeld S, Huang JJ, Tsao GT (1984) Expression of the E. coli xylose isomerase gene by a yeast promoter. Biotechnol Bioeng Symp 13:245–250Google Scholar
  60. Holden H, Cooper-Key D, Carlill P, Hinchcliff H, Heath W, Black W, Ormandy DHM (1919) Petroleum executive: report of the inter- departmental committee on various matters concerning the production and utilization of alcohol for power and traction purposes. (117–124). HMSO. Cd.218Google Scholar
  61. Holyoak CD, Stratford M, McMullin Z, Cole MB, Crimmins K, Brown AJ, Coote PJ (1996) Activity of the plasma membrane H(+)-ATPase and optimal glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid. Appl Environ Microbiol 62:3158–3164PubMedGoogle Scholar
  62. Horak J, Wolf DH (1997) Catabolite inactivation of the galactose transporter in the yeast Saccharomyces cerevisiae: ubiquitination, endocytosis, and degradation in the vacuole. J Bacteriol 179:1541–1549PubMedGoogle Scholar
  63. Howard RL, Abotsi E, Jansen van Rensburg E, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. African J Biotech 2:602–619Google Scholar
  64. Hsiao HY, Chiang LC, Chen LF, Tsao GT (1982) Effects of borate on isomerization and yeast fermentation of high xylulose solution and acid hydrolysate of hemicellulose. Enzyme Microb Technol 4:25–31Google Scholar
  65. Imai T, Ohno T (1995) The relationship between viability and intracellular pH in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 61:3604–3608PubMedGoogle Scholar
  66. Ingram LO, Aldrich HC, Borges AC, Causey TB, Martinez A, Morales F, Saleh A, Underwood SA, Yomano LP, York SW, Zaldivar J, Zhou S (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 15:855–866PubMedGoogle Scholar
  67. Iogen Corporation (2005) Cellulose ethanol: clean fuel for today and tomorrow. Iogen Corporation, Ottawa, CanadaGoogle Scholar
  68. Jeffries TW, Jin YS (2004). Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63:495–509PubMedGoogle Scholar
  69. Jeppsson M, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF (2002) Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol 68:1604–1609PubMedGoogle Scholar
  70. Jin YS, Ni H, Laplaza JM, Jeffries TW (2003) Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate d-xylulokinase activity. Appl Environ Microbiol 69:495–503PubMedGoogle Scholar
  71. Johnston M, Flick JS, Pexton T (1994) Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae. Mol Cell Biol 14:3834–3841PubMedGoogle Scholar
  72. Johnston SA, Salmeron JM, Dincher SS (1987) Interaction of positive and negative regulatory proteins in the galactose regulon of yeast. Cell 50:143–146PubMedGoogle Scholar
  73. Jönsson LJ, Palmqvist E, Nilvebrant NO, Hahn-Hägerdal B (1998) Detoxification of wood hydrolyzates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol 49:691–697Google Scholar
  74. Kamp AF, La Rivière JWM, Verhoeven W (1959) Albert Jan Kluyver his life and his work; biographical memoranda, selected papers, bibliography and addenda. NHPC, AmsterdamGoogle Scholar
  75. Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF (2005) Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22:359–368PubMedGoogle Scholar
  76. Kastner JR, Jones WJ, Roberts RS (1999) Oxygen starvation induces cell death in Candida shehatae fermentations of d-xylose, but not d-glucose. Appl Microbiol Biotechnol 51:780–785PubMedGoogle Scholar
  77. Keating JD, Robinson J, Cotta MA, Saddler JN, Mansfield SD (2004) An ethanologenic yeast exhibiting unusual metabolism in the fermentation of lignocellulosic hexose sugars. J Ind Microbiol Biotechnol 31:235–244PubMedCrossRefGoogle Scholar
  78. Khandekar ML, Murty TS, Chittibabu P (2005) The global warming debate: a review of the state of science. Pure Appl Geophys 162:1557–1586Google Scholar
  79. Kilgore WW, Starr MP (1959) Catabolism of galacturonic and glucuronic acids by Erwinia carotovoro. J Biol Chem 234:2227–2235PubMedGoogle Scholar
  80. Klare MT (2001) The new geography of conflict. Foreign Aff 80:49Google Scholar
  81. Klinke HB, Ahring BK, Schmidt AS, Thomsen AB (2002) Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresour Technol 82:15–26PubMedGoogle Scholar
  82. Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26PubMedGoogle Scholar
  83. Kluyver AJ (1914) Thesis: Biochemische suikerbepalingen. Delft University of TechnologyGoogle Scholar
  84. Kluyver AJ, Schnellen Ch (1937) Über die Vergärung von Rhamnose. Enzymologia 4:7–12Google Scholar
  85. Kötter P, Amore R, Hollenberg CP, Ciriacy M (1990) Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet 18:493–500PubMedGoogle Scholar
  86. Kötter P, Ciriacy M (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776–783Google Scholar
  87. Kou SC, Christensen MS, Cirillo VP (1970) Galactose transport in Saccharomyces cerevisiae. 2. Characteristics of galactose uptake and exchange in galacktokinaseless cells. J Bacteriol 103:671–678PubMedGoogle Scholar
  88. Kressmann FW (1922) The manufacture of ethyl alcohol from wood waste. U.S. Dep. Agric. Bull. 983Google Scholar
  89. Kruckeberg AL (1996) The hexose transporter family of Saccharomyces cerevisiae. Arch Microbiol 166:283–292PubMedGoogle Scholar
  90. Kuorelahti S, Kalkkinen N, Penttilä M, Londesborough J, Richard P (2005) Identification in the mold Hypocrea jecorina of the first fungal d-galacturonic acid reductase. Biochemistry 44:11234–11240PubMedGoogle Scholar
  91. Kurtzman CP, Dien BS (1998) Candida arabinofermentans, a new l-arabinose fermenting yeast. Antonie van Leeuwenhoek 74:237–243PubMedGoogle Scholar
  92. Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MS, de Laat WT, de Ridder JJ, Op den Camp HJ, van Dijken JP, Pronk JT (2003) High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res 4:69–78PubMedGoogle Scholar
  93. Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, van Dijken JP, Pronk JT (2005a) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5:399–409Google Scholar
  94. Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT (2005b) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5:925–934Google Scholar
  95. Kuyper M, Winkler AA, van Dijken JP, Pronk JT (2004) Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4:655–664PubMedGoogle Scholar
  96. Larsson S, Cassland P, Jönsson LJ (2001a) Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl Environ Microbiol 67:1163–1170Google Scholar
  97. Larsson S, Nilvebrant NO, Jönsson LJ (2001b). Effect of overexpression of Saccharomyces cerevisiae Pad1p on the resistance to phenylacrylic acids and lignocellulose hydrolysates under aerobic and oxygen-limited conditions. Appl Microbiol Biotechnol 57:167–174Google Scholar
  98. Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol 24:151–159Google Scholar
  99. Leão C, Van Uden N (1984) Effects of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 774:43–48PubMedGoogle Scholar
  100. Lee N, Gielow W, Martin R, Hamilton E, Fowler A (1986) The organization of the araBAD operon of Escherichia coli. Gene 47:231–244PubMedGoogle Scholar
  101. Lee RL (1997) Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment and policy. Annu Rev Energy Environ 21:403–465Google Scholar
  102. Leloir LF (1951) The enzymatic transformation of uridine diphosphate glucose into a galactose derivative. Arch Biochem Biophys 33:186–190Google Scholar
  103. Leuther KK, Johnston SA (1992) Nondissociation of GAL4 and GAL80 in vivo after galactose induction. Science 256:1333–1335PubMedGoogle Scholar
  104. Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW (2004) Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol 31:345–352PubMedGoogle Scholar
  105. Liu ZL, Slininger PJ, Gorsich SW (2005) Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol 121–124:451–460PubMedGoogle Scholar
  106. López MJ, Nichols NN, Dien BS, Moreno J, Bothast RJ (2004) Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates. Appl Microbiol Biotechnol 64:125–131PubMedGoogle Scholar
  107. Ludovico P, Sousa MJ, Silva MT, Leão C, Côrte-Real M (2001) Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147:2409–2415PubMedGoogle Scholar
  108. Lugar R, Woolsey RJ (1999) The new petroleum. Foreign Aff 78:88–102Google Scholar
  109. Lynd LR (1996) Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu Rev Energy Environ 21:403–465Google Scholar
  110. Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583PubMedGoogle Scholar
  111. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577PubMedGoogle Scholar
  112. Melcher K (1997) Galactose metabolism in Saccharomyces cerevisiae: a paradigm for eukaryotic gene regulation. Yeast sugar metabolism. Technomic Publishing Inc., Lancaster PA, pp 235–269Google Scholar
  113. Micard V, Renard CMGC, Thibault JF (1996) Enzymatic saccharification of sugar-beet pulp. Enzyme Microb Technol 19:162–170Google Scholar
  114. Moes CJ, Pretorius IS, van Zyl WH (1996) Cloning and expression of the Clostridium thermosulfurogenes d-xylose isomerase gene (xylA) in Saccharomyces cerevisiae. Biotechnol Lett 18:269–274Google Scholar
  115. Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93:1–10PubMedGoogle Scholar
  116. Navarro AR (1994) Effects of furfural on ethanol fermentation by Saccharomyces cerevisiae: mathematical models. Curr Microbiol 29:87–90Google Scholar
  117. Nehlin JO, Carlberg M, Ronne H (1991) Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. EMBO J 10:3373–3377PubMedGoogle Scholar
  118. Nichols NN, Dien BS, Guisado GM, López MJ (2005) Bioabatement to remove inhibitors from biomass-derived sugar hydrolysates. Appl Biochem Biotechnol 121:379–390PubMedGoogle Scholar
  119. Nigam JN (2001) Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol 87:17–27PubMedGoogle Scholar
  120. Nilsson A, Modig T, Gorwa-Grauslund MF, Hahn-Hägerdal B, Lidén G (2005) Furan reduction capacity of Saccharomyces cerevisiae strains in fermentation of dilute-acid hydrolysates. J Biotechnol Abstracts 118S1:S1–S189Google Scholar
  121. Nissen TL, Anderlund M, Nielsen J, Villadsen J, Kielland-Brandt MC (2001) Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool. Yeast 18:19–32PubMedGoogle Scholar
  122. Nissen TL, Hamann CW, Kielland-Brandt MC, Nielsen J, Villadsen J (2000) Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis. Yeast 16:463–474PubMedGoogle Scholar
  123. Oh D, Hopper JE (1990) Transcription of a yeast phosphoglucomutase isozyme gene is galactose inducible and glucose repressible. Mol Cell Biol 10:1415–1422PubMedGoogle Scholar
  124. Oosterveld A (1997) Thesis: Pectic substances from sugar beet pulp: structural features, enzymatic modification, and gel formation. Wageningen UniversiteitGoogle Scholar
  125. Ostergaard S, Walloe KO, Gomes SG, Olsson L, Nielsen J (2001) The impact of GAL6, GAL80, and MIG1 on glucose control of the GAL system in Saccharomyces cerevisiae. FEMS Yeast Res 1:47–55PubMedGoogle Scholar
  126. Palmqvist E, Grage H, Meinander NQ, Hahn-Hägerdal B (1999) Main and interaction effects of acetic acid, furfural, and para-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol Bioeng 63:46–55PubMedGoogle Scholar
  127. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33Google Scholar
  128. Palmqvist E, Hahn-Hägerdal B, Szengyel Z, Zacchi G, Rèczey K (1997) Simultaneous detoxification and enzyme production of hemicellulose hydrolysates obtained after steam pretreatment. Enzyme Microb Technol 20:286–293Google Scholar
  129. Pampulha ME, Loureiro-Dias MC (1989) Combined effect of acetic acid, pH and ethanol on intracellular pH of fermenting yeast. Appl Microbiol Biotechnol 31:547–550Google Scholar
  130. Pampulha ME, Loureiro-Dias MC (1990) Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid. Appl Microbiol Biotechnol 34:375–380Google Scholar
  131. Perez J, Munoz-Dorado J, de la Rubia T, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63PubMedGoogle Scholar
  132. Petschacher B, Leitgeb S, Kavanagh KL, Wilson DK, Nidetzky B (2005). The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Biochem J 385:75–83PubMedGoogle Scholar
  133. Platt A, Reece RJ (1998) The yeast galactose genetic switch is mediated by the formation of a Gal4p-Gal80p-Gal3p complex. EMBO J 17:4086–4091PubMedGoogle Scholar
  134. Radoi F, Kishida M, Kawasaki H (2005) Characteristics of wines made by Saccharomyces mutants which produce a polygalacturonase under wine-making conditions. Biosci Biotechnol Biochem 69:2224–2226PubMedGoogle Scholar
  135. Reifenberger E, Boles E, Ciriacy M (1997) Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur J Biochem 245:324–333PubMedGoogle Scholar
  136. Richard P, Putkonen M, Väänänen R, Londesborough J, Penttilä M (2002) The missing link in the fungal l-arabinose catabolic pathway, identification of the l-xylulose reductase gene. Biochemistry 41:6432–6437PubMedGoogle Scholar
  137. Richard P, Verho R, Putkonen M, Londesborough J, Penttilä M (2003) Production of ethanol from l-arabinose by Saccharomyces cerevisiae containing a fungal l-arabinose pathway. FEMS Yeast Res 3:185–189PubMedGoogle Scholar
  138. Rigo LU, Marechal LR, Vieira MM, Veiga LA (1985) Oxidative pathway for l-rhamnose degradation in Pullularia pullulans. Can J Microbiol 31:817–822Google Scholar
  139. Rizzi M, Erlemann P, Buithanh NA and Dellweg H (1988) Xylose fermentation by yeasts. 4. Purification and kinetic-studies of xylose reductase from Pichia stipitis. Appl Microbiol Biotechnol 29:148–154CrossRefGoogle Scholar
  140. Ronnow B, Olsson L, Nielsen J, Mikkelsen JD (1999) Derepression of galactose metabolism in melibiase producing bakers’ and distillers’ yeast. J Biotechnol 72:213–228PubMedGoogle Scholar
  141. Russell JB (1992) Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. J Appl Bacteriol 73:363–370Google Scholar
  142. Sarthy AV, McConaughy BL, Lobo Z, Sundstrom JA, Furlong CE Hall BD (1987) Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae. Appl Environ Microbiol 53:1996–2000PubMedGoogle Scholar
  143. Sauer U (2001) Evolutionary engineering of industrially important microbial phenotypes. Adv Biochem Eng Biotechnol 73:129–169PubMedGoogle Scholar
  144. Sawada H, Takagi Y (1964) The metabolism of l-rhamnose in Escherichia coli III l-rhamnulose-phosphate aldolase. Biochim Biophys Acta 92:26–32PubMedGoogle Scholar
  145. Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310PubMedGoogle Scholar
  146. Sedlak M, Ho NWY (2001) Expression of E. coli araBAD operon encoding enzymes for metabolizing l-arabinose in Saccharomyces cerevisiae. Enzyme Microb Technol 28:16–24PubMedGoogle Scholar
  147. Sedlak M, Ho NWY (2004) Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose. Appl Biochem Biotechnol 114:403–416Google Scholar
  148. Serrat M, Bermúdez RC, Villa TG (2004) Polygalacturonase and ethanol production in Kluyveromyces marxianus: potential use of polygalacturonase in foodstuffs. Appl Biochem Biotechnol 117:49–64PubMedGoogle Scholar
  149. Sirotek K, Slováková L, Kopecný J, Marounek M (2004) Fermentation of pectin and glucose, and activity of pectin-degrading enzymes in the rabbit caecal bacterium Bacteroides caccae. Lett Appl Microbiol 38:327–332PubMedGoogle Scholar
  150. Sjöström E (1991) Carbohydrate degradation products from alkaline treatment of biomass. Biomass Bioenergy 1:61–64Google Scholar
  151. Slininger PJ, Bothast RJ, Vancauwenberge JE, Kurtzman CP (1982) Conversion of d-xylose to ethanol by the yeast Pachysolen tannophilus. Biotechnol Bioeng 24:371–384PubMedGoogle Scholar
  152. Sonderegger M, Jeppsson M, Larsson C, Gorwa-Grauslund MF, Boles E, Olsson L, Spencer-Martins I, Hahn-Hägerdal B, Sauer U (2004) Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng 87:90–98PubMedGoogle Scholar
  153. Sonderegger M, Sauer U (2003) Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69:1990–1998PubMedGoogle Scholar
  154. Taherzadeh MJ, Gustafsson L, Niklasson C, Lidén G (1999) Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. J Biosci Bioeng 87:169–174PubMedGoogle Scholar
  155. Taherzadeh MJ, Gustafsson L, Niklasson C, Lidén G (2000) Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53:701–708PubMedGoogle Scholar
  156. Taherzadeh MJ, Niklasson C, Lidén G, Eklund R, Gustafsson L (1997) Characterization and fermentation of dilute-acid hydrolyzates from wood. Ind Eng Chem Res 36:4659–4665Google Scholar
  157. Takagi Y, Sawada H (1964a) The metabolism of l-rhamnose in Escherichia coli I. l-rhamnose isomerase. Biochim Biophys Acta 92:10–17Google Scholar
  158. Takagi Y, Sawada H (1964b) The metabolism of l-rhamnose in Escherichia coli II l-rhamnulose kinase. Biochim Biophys Acta 92:18–25Google Scholar
  159. Thakur BR, Singh RK, Handa AK (1997) Chemistry and uses of pectin – a review. Crit Rev Food Sci Nutr 37:47–73PubMedCrossRefGoogle Scholar
  160. Thomas KC, Hynes SH, Ingledew WM (2001) Effect of lactobacilli on yeast growth, viability and batch and semi-continuous alcoholic fermentation of corn mash. J Appl Microbiol 90:819–828PubMedGoogle Scholar
  161. Toivari MH, Aristidou A, Ruohonen L, Penttilä M (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng 3:236–249PubMedGoogle Scholar
  162. Toivola A, Yarrow D, Van den Bosch E, van Dijken JP, Scheffers WA (1984) Ethanolic fermentation of d-xylose by yeasts. Appl Environ Microbiol 47:1221–1223PubMedGoogle Scholar
  163. Twerdochlib AL, Pedrosa FO, Funayama S, Rigo LU (1994) l-rhamnose metabolism in Pichia stipitis and Debaryomyces polymorphus. Can J Microbiol 40:896–902CrossRefGoogle Scholar
  164. van Dijken JP, Scheffers WA (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Rev 32:199–224Google Scholar
  165. van Rooyen R, Hahn-Hägerdal B, La Grange DC, van Zyl WH (2005) Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. J Biotechnol 120:284–295PubMedGoogle Scholar
  166. Verduyn C, Postma E, Scheffers WA, van Dijken JP (1990a) Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 136:405–412Google Scholar
  167. Verduyn C, Postma E, Scheffers WA, van Dijken JP (1990b) Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 136:395–403Google Scholar
  168. Verduyn C, Postma E, Scheffers WA, van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517PubMedGoogle Scholar
  169. Verho R, Londesborough J, Penttilä M, Richard P (2003) Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol 69:5892–5897PubMedGoogle Scholar
  170. Verho R, Putkonen M, Londesborough J, Penttilä M, Richard P (2004) A novel NADH-linked l-xylulose reductase in the l-arabinose catabolic pathway of yeast. J Biol Chem 279:14746–14751PubMedGoogle Scholar
  171. Vincent SF, Bell PJ, Bissinger P, Nevalainen KM (1999) Comparison of melibiose utilizing baker’s yeast strains produced by genetic engineering and classical breeding. Lett Appl Microbiol 28:148–152PubMedGoogle Scholar
  172. Visser J, Van Rooijen R, Dijkema C, Swart K, Sealy-Lewis HM (1988) Glycerol uptake mutants of the hyphal fungus Aspergillus nidulans. J Gen Microbiol 134:655–659PubMedGoogle Scholar
  173. Visser W, Scheffers WA, Batenburg-van der Vegte WH, van Dijken JP (1990) Oxygen requirements of yeasts. Appl Environ Microbiol 56:3785–3792PubMedGoogle Scholar
  174. Wahlbom CF, Hahn-Hägerdal B (2002) Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 78:172–178PubMedGoogle Scholar
  175. Walfridsson M, Bao X, Anderlund M, Lilius G, Bulow L, Hahn-Hägerdal B (1996) Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 62:4648–4651PubMedGoogle Scholar
  176. Walfridsson M, Hallborn J, Penttilä M, Keränen S, Hahn-Hägerdal B (1995) Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing theTKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl Environ Microbiol 61:4184–4190PubMedGoogle Scholar
  177. Wang PY, Schneider H (1980) Growth of yeasts on d-xylulose. Can J Microbiol 26:1165–1168PubMedCrossRefGoogle Scholar
  178. Wilson DM, Ajl S (1955) The metabolism of l-rhamnose by Escherichia coli. Biochim Biophys Acta 17:289PubMedGoogle Scholar
  179. Wilson DM, Ajl S (1957a) Metabolism of l-rhamnose by Escherichia coli. I. l-rhamnose isomerase. J Bacteriol 73:410–414Google Scholar
  180. Wilson DM, Ajl S (1957b) Metabolism of l-rhamnose by Escherichia coli. II. The phosphorylation of l-rhamnulose. J Bacteriol 73:415–420Google Scholar
  181. Witteveen CFB, Busink R, Vandevondervoort P, Dijkema C, Swart K, Visser J (1989) l-arabinose and d-xylose catabolism in Aspergillus niger. J Gen Microbiol 135:2163–2171Google Scholar
  182. Witteveen CFB, Weber F, Busink R, Visser J (1994) Isolation and characterization of two xylitol dehydrogenases from Aspergillus niger. Microbiology 140:1679–1685CrossRefGoogle Scholar
  183. Wu YB, Reece RJ, Ptashne M (1996) Quantitation of putative activator-target affinities predicts transcriptional activating potentials. EMBO J 15:3951–3963PubMedGoogle Scholar
  184. Yoon SH, Mukerjea R, Robyt JF (2003) Specificity of yeast (Saccharomyces cerevisiae) in removing carbohydrates by fermentation. Carbohydr Res 338:1127–1132PubMedGoogle Scholar
  185. Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34PubMedGoogle Scholar
  186. Zandleven J, Beldman G, Bosveld M, Benen J, Voragen A (2005) Mode of action of xylogalacturonan hydrolase towards xylogalacturonan and xylogalacturonan oligosaccharides. Biochem J 387:719–725PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Antonius J. A. van Maris
    • 1
  • Derek A. Abbott
    • 1
  • Eleonora Bellissimi
    • 1
  • Joost van den Brink
    • 1
  • Marko Kuyper
    • 1
  • Marijke A. H. Luttik
    • 1
  • H. Wouter Wisselink
    • 1
  • W. Alexander Scheffers
    • 1
  • Johannes P. van Dijken
    • 1
    • 2
  • Jack T. Pronk
    • 1
  1. 1.Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
  2. 2.Bird Engineering B.V.SchiedamThe Netherlands

Personalised recommendations