Antonie van Leeuwenhoek

, Volume 90, Issue 1, pp 93–108

The production of a new extracellular putative long-chain saturated polyester by smooth variants of Mycobacterium vaccae interferes with Th1-cytokine production

  • Elisabeth Rodríguez-Güell
  • Gemma Agustí
  • Mercè Corominas
  • Pere-Joan Cardona
  • Isidre Casals
  • Teodor Parella
  • Marco-Antonio Sempere
  • Marina Luquin
  • Esther Julián
Article

Abstract

Mycobacterium vaccae is of major pharmaceutical interest as an immunotherapeutic agent. Although M. vaccae 15483 ATCCT strain displays smooth and rough colonial morphologies on solid culture media, it is not known in which conditions M. vaccae switches from one colonial morphotype to the other or whether there are biological differences, especially immunological, between them. We have found that the change from a smooth to rough stable variant occurs spontaneously at 30 °C. The analysis of the composition of the cell wall in both variants showed that the smooth morphotype presents an extracellular material that has never previously been described and was identified as a long-chain saturated polyester that, interestingly, is not produced by the rough morphotype. Our results also indicate that this compound could be implicated in the spreading ability of smooth colonies. Proliferation, IFN-\(\upgamma\) and IL-12(p40) production by splenocyte cultures was significantly higher in mice immunised with the rough variant compared with those immunised with the smooth one. This latter finding suggests that the different colonial morphology of M. vaccae may affect the immunomodulatory effects induced from M. vaccae preparations.

Keywords

Colony morphology Exopolymer IFN-\(\upgamma\) Long-chain saturated polyester Mycobacterium vaccae 

Abbreviations

ELISA

enzyme-linked immunosorbent assay

GC-MS

gas chromatography-mass spectrometry

HKR

heat-killed rough

HKS

heat-killed smooth

HPLC

high performance liquid chromatography

IR

infrared

LEDBP

bipolar-gradient LED

NMR

nuclear magnetic resonance

PFGSE

pulsed field-gradient spin-echo

RC

red compound

SEM

scanning electron microscopy

TLC

thin layer chromatography

TTA

2,3,5-triphenyl tetrazole

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. Abbot N.C., Beck J.S., Feval F., Weiss F., Mobayen M.H., Ghazi-Saidi K., Dowlati Y., Velayati A.A., Stanford J.L. (2002) Immunotherapy with Mycobacterium vaccae and pe ripheral blood flow in long-treated leprosy patients, a randomised, placebo-controlled trial. Eur. J. Vasc. Endovasc. Surg. 24: 202–208PubMedCrossRefGoogle Scholar
  2. Abou-Zeid C., Gares M.P., Inwald J.,Janssen R., Zhang Y., Young D.B., Hetzel C., Lamb J.R., Baldwin S.L., Orme I.M., Yeremeev V., Nikonenko B.V., Apt A.S. (1997) Induction of a type 1 immune response to a recombinant antigen from Mycobacterium tuberculosis expressed in Mycobacterium vaccae. Infect. Immun. 65: 1856–1862PubMedGoogle Scholar
  3. Arkwright P.D., David T.J. (2001) Intradermal administration of a killed Mycobacterium vaccae suspension (SRL 172) is associated with improvement in atopic dermatitis in children with moderate-to-severe disease. J. Allergy Clin. Immunol. 107: 531–534PubMedCrossRefGoogle Scholar
  4. Balagon M.V., Walsh D.S., Tan P.L., Cellona R.V., Abalos R.M., Tan E.V., Fajardo T.T., Watson J.D., Walsh G.P. (2000) Improvement in psoriasis after intradermal administration of heat-killed Mycobacterium vaccae. Int. J. Dermatol. 39: 51–58PubMedCrossRefGoogle Scholar
  5. Balagon M.V., Tan P.L., Prestidge R., Cellona R.V., Abalos R.M., Tan E.V., Walsh G.P., Watson J.D., Walsh D.S. (2001) Improvement in psoriasis after intradermal administration of delipidated, deglycolipidated Mycobacterium vaccae (PVAC): results of an open-label trial. Clin. Exp. Dermatol. 26: 233–241PubMedCrossRefGoogle Scholar
  6. Barrow W.W., Brennan P.J. (1982) Isolation in high frequency of rough variants of Mycobacterium intracellulare lacking C-mycoside glycopeptidolipid antigens. J. Bacteriol. 150:381–384PubMedGoogle Scholar
  7. Belisle J.T., Brennan P.J. (1989) Chemical basis of rough and smooth variation in mycobacteria. J. Bacteriol. 171: 3465–3470PubMedGoogle Scholar
  8. Boenickse R., Juhasz E. (1964) Boeschreibung der neuen Species Mycobacterium vaccae n. sp. Zbl. Bakt. Abt. I, Orig A. 192: 133–135Google Scholar
  9. Camporota L., Corkhill A., Long H., Lordan J., Stanciu L., Tuckwell N., Cross A., Stanford J.L., Rook G.A., Holgate S.T., Djukanovic R. (2003) The effects of Mycobacterium vaccae on allergen-induced airway responses in atopic asthma. Eur. Respir. J. 21:287–293PubMedCrossRefGoogle Scholar
  10. Cermak S.C., Isbell T.A. (2003) Synthesis and physical properties of estolide-based functional fluids. Ind. Crops Products. 18: 183–196CrossRefGoogle Scholar
  11. Chadwick M.V. (1981) Mycobacteria – (Monographs in Medical laboratory science series). Wright-PSG, LondonGoogle Scholar
  12. Chambaz E.M., Horning E.C. (1969) Conversion of steroids to trimethylsilyl derivatives for gas phase analytical studies: reactions of silylating reagents. Anal. Biochem. 30:7–24PubMedCrossRefGoogle Scholar
  13. da Silva T.R., de Freitas J.R., Silva Q.C., Figueira C.P., Roxo E., Leao S.C., de Freitas L.A., Veras P.S. (2002) Virulent Mycobacterium fortuitum restricts NO production by a gamma interferon-activated J774 cell line and phagosome-lysosome fusion. Infect. Immun. 70: 5628–5634PubMedCrossRefGoogle Scholar
  14. Daffé M., Draper P. (1998) The envelope layers of mycobacteria with reference to their pathogenicity. Adv. Microb. Physiol. 39:131–203PubMedCrossRefGoogle Scholar
  15. Etienne G., Villeneuve C., Billman-Jacobe H., Astarie-Dequeker C., Dupont M.A., Daffé M. (2002) The impact of the absence of glycopeptidolipids on the ultrastructure, cell surface and cell wall properties, and phagocytosis of Mycobacterium smegmatis. Microbiology 148: 3089–3100PubMedGoogle Scholar
  16. Friebolin H. (1991) Basic One- and Two-dimensional NMR Spectroscopy. VCH, WeinheimGoogle Scholar
  17. Hadley E.A., Smillie F.I., Turner M.A., Custovic A., Wookcock A., Arkwright P.D. (2005) Effect of Mycobacterium vaccae on cytokine responses in children with atopic dermatitis. Clin. Exp. Immunol. 140: 101–108PubMedCrossRefGoogle Scholar
  18. Hölscher C. (2004) The power of combinatorial immunology: IL-12 and IL-12 related dimeric cytokines in infectious diseases. Med. Microbiol. Immunol. 193: 1–17PubMedCrossRefGoogle Scholar
  19. Hrouda D., Baban B., Dunsmuir W.D., Kirby R.S., Dalgleish A.G. (1998) Immunotherapy of advanced prostate cancer: a phase I/II trial using Mycobacterium vaccae (SRL172). Br. J. Urol. 82: 568–573PubMedGoogle Scholar
  20. Janssen R., Kruisselbrink A., Hoogteijling L., Lamb J.R., Young D.B., Thole J.E. (2001) Analysis of recombinant mycobacteria as T helper type 1 vaccines in an allergy challenge model. Immunology 102: 441–449PubMedCrossRefGoogle Scholar
  21. Knothe G., Nelsen T.C. (1998) Evaluation of the 13C NMR signals of saturated carbons in some long-chain compounds. J. Chem. Soc. Perkin Trans. 2. 9:2019–2026Google Scholar
  22. Luquin M., Ausina V., Lopez-Calahorra F., Belda F., Garcia-Barceló M., Celma C., Prats G. (1991) Evaluation of practical chromatographic procedures for identification of clinical isolates of mycobacteria. J. Clin. Microbiol. 29:120–130PubMedGoogle Scholar
  23. Martinez A., Torello S., Kolter R. (1999) Sliding motility in mycobacteria. J. Bacteriol. 181:7331–7338PubMedGoogle Scholar
  24. Mayo R.E., Stanford J.L. (2000) Double-blind placebo-controlled trial of Mycobacterium vaccae immunotherapy for tuberculosis in KwaZulu, South Africa, 1991–1997. Trans. R. Soc. Trop. Med. Hyg. 94:563–568PubMedCrossRefGoogle Scholar
  25. Mendes R., O’Brien M.E.R., Mitra A., Norton A., Gregory R.K., Padhani A.R., Bromelow K.V., Winkley A.R., Ashley S., Smith I.E., Souberbielle B.E. (2002) Clinical and immunological assessment of Mycobacterium vaccae (SRL172) with chemotherapy in patients with malignant mesothelioma. Br. J. Cancer 86: 336–341PubMedCrossRefGoogle Scholar
  26. Moehring J.M., Solotorovsky M.R. (1965) Relationship of colonial morphology to virulence for chickens of Mycobacterium avium and the nonphotochromogens. Am. Rev. Respir. Dis. 92: 704–713PubMedGoogle Scholar
  27. Muñoz M., Raynaud C., Lanéelle M.A., Julián E., Lopez Marín L.M., Silve G., Ausina V., Daffé M., Luquin M. (1998) Seroreactive species-specific lipooligosaccharides of Mycobacterium mucogenicum sp. nov. (formerly Mycobacterium chelonae-like organisms): identification and chemical characterization. Microbiology 144: 137–148PubMedCrossRefGoogle Scholar
  28. O’Brien M.E., Saini A., Smith I.E., Webb A., Gregory K., Mendes R., Ryan C., Priest K., Bromelow K.V., Palmer R.D., Tuckwell N., Kennard D.A., Souberbielle B.E. (2000) A randomized phase II study of SRL172 (Mycobacterium vaccae) combined with chemotherapy in patients with advanced inoperable non-small-cell lung cancer and mesothelioma. Br. J. Cancer 83: 853–857PubMedCrossRefGoogle Scholar
  29. O’Brien M.E., Anderson H., Kaukel E., O’Byrne K., Pawlicki M., Von Pawel J., Reck M., SR-ON-12 Study Group. (2004) SRL172 (killed Mycobacterium vaccae) in addition to standard chemotherapy improves quality of life without affecting survival, in patients with advanced non-small-cell lung cancer: phase III results. Ann. Oncol. 15: 906–914PubMedCrossRefGoogle Scholar
  30. Peláez M., Orellana C., Marques A., Busquets M., Guerrero A., Manresa A. (2003) Natural estolides produced by Pseudomonas sp 42a2 grown on oleic acid: production and characterization. J. Am. Oil Chem. Soc. 80:859–866CrossRefGoogle Scholar
  31. Pym A.S., Brodin P., Brosch R., Huerre M., Cole S.T. (2002) Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol. Microbiol. 46: 709–717PubMedCrossRefGoogle Scholar
  32. Recht J., Martinez A., Torello S., Kolter R. (2000) Genetic analysis of sliding motility in Mycobacterium smegmatis. J. Bacteriol. 182: 4348–4351PubMedCrossRefGoogle Scholar
  33. Reddy V.M., Luna-Herrera J., Gangadharam P.R.J. (1996) Pathobiological significance of colony morphology in Mycobacterium avium complex. Microb. Pathog. 21: 97–109PubMedCrossRefGoogle Scholar
  34. Roach D.R., Martin E., Bean A.G., Rennick D.M., Biscoe H., Britton W.J. (2001) Endogenous inhibition of antimycobacterial immunity by IL-10 varies between mycobacterial species. Scand. J. Immunol. 54: 163–170PubMedCrossRefGoogle Scholar
  35. Rotzsche H. (1991) Gas chromatographic analysis of fatty acid salts. J. Chromat. A. 552: 281–288CrossRefGoogle Scholar
  36. Sacchi R., Addeo F., Paolillo L. (1997) 1H and 13C NMR of virgin olive oil. An overview. Magn. Reson. Chem. 35:S133-S145CrossRefGoogle Scholar
  37. Schaefer W.B., Davis C.L., Cohn M.L. (1970) Pathogenicity of transparent, opaque, and rough variants of Mycobacterium avium in chickens and mice. Am. Rev. Respir. Dis. 102: 499–506PubMedGoogle Scholar
  38. Shirtcliffe P.M., Eastophe S.E., Cheng S., Weatherall M., Tan P.L., Le gros G., Beasley R. (2001) The Effect of Delipidated Deglycolipidated (DDMV) and Heat-killed Mycobacterium vaccae in Asthma. Am. J. Respir. Crit. Care Med. 163:1410–1414PubMedGoogle Scholar
  39. Shirtcliffe P.M., Goldkorn A., Weatherall M., Tan P.L., Beasley R. (2003) Pilot study of the safety and effect of intranasal delipidated acid-treated Mycobacterium vaccae in adult asthma. Respirology 8:497–503PubMedCrossRefGoogle Scholar
  40. Skinner M.A., Prestidge R., Yuan S., Strabala T.J., Tan P.L. (2001) The ability of heat-killed Mycobacterium vaccae to stimulate a cytotoxic T-cell response to an unrelated protein is associated with a 65 kDa heat-shock protein. Immunology 2: 225–233CrossRefGoogle Scholar
  41. Skinner M.A., Yuan S., Prestidge R., Chuk D., Watson J.D., Tan P.L.J. (1997) Immunization with heat-killed Mycobacterium vaccae stimulates CD81 cytotoxic T cells specific for macrophages infected with Mycobacterium tuberculosis. Infect. Immun. 65:4525–4530PubMedGoogle Scholar
  42. Stanford J.L., Paul R.C. (1973) A preliminary report on some studies of environmental mycobacteria. Ann. Soc. Belg. Med. Trop. 53: 389–393PubMedGoogle Scholar
  43. Stanford J., Stanford C., Grange J. (2004) Immunotherapy with Mycobacterium vaccae in the treatment of tuberculosis. Front. Biosci. 9: 1701–1719PubMedCrossRefGoogle Scholar
  44. Thornton A.M., Shevach E.M. (1998) CD4+CD25+ immunoregulatory T cells supress polyclonal T cell activation in vitro by inhibiting interleukin-2 production. J. Exp. Med. 188: 287–296PubMedCrossRefGoogle Scholar
  45. Van Boxtel R.M., Lambrecht R.S., Collins M.T. (1990) Effects of colonial morphology and tween 80 on antimicrobial susceptibility of Mycobacterium paratuberculosis. Antimicrob. Agents Chemother. 34: 2300–2303PubMedGoogle Scholar
  46. Vestal A.L., Kubica G.P. (1966) Differential colonial characteristics of mycobacteria on Middlebrook and Cohn 7H10 agar–base medium. Am. Rev. Respir. Dis. 94: 247–252PubMedGoogle Scholar
  47. Wang C.C., Rook G.A.W. (1998) Inhibition of an established allergic response to ovalbumin in BALB/c mice by killed Mycobacterium vaccae. Immunology 93: 307–313PubMedCrossRefGoogle Scholar
  48. Wayne L.G., Kubica G.P. (1986) The mycobacteria. In: Holt J.G., Sneath P.H., Mair N.S., Sharpe M.E. (eds) Bergey’s Manual of Systematic Bacteriology, Vol. 2. Williams & Wilkins, Baltimore, MD, pp 1435–1457Google Scholar
  49. Zuany-Amorim C., Manlius C., Trifilieff C., Brunet L.R., Rook G., Bowen G., Pay G., and Walker C. (2002) Long-term protective and antigen-specific effect of heat-killed Mycobacterium vaccae in a murine model of allergic pulmonary inflammation. J. Immunol. 169:1492–1499PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Elisabeth Rodríguez-Güell
    • 1
  • Gemma Agustí
    • 1
  • Mercè Corominas
    • 2
  • Pere-Joan Cardona
    • 3
  • Isidre Casals
    • 4
  • Teodor Parella
    • 5
  • Marco-Antonio Sempere
    • 6
  • Marina Luquin
    • 1
  • Esther Julián
    • 1
  1. 1.Departament de Genètica i de Microbiologia, Facultat de CiènciesUniversitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Servei d’Immunologia-Al·lèrgiaHospital Universitari de Bellvitge L’Hospitalet de LlobregatSpain
  3. 3.Unitat de Tuberculosi ExperimentalFundació Institut per a la Investigació en Ciències de la Salut Germans Trias i PujolBadalonaSpain
  4. 4.Serveis CientificotècnicsUniversitat de BarcelonaBarcelonaSpain
  5. 5.Servei de Ressonància Magnètica NuclearUniversitat Autònoma de BarcelonaBellaterraSpain
  6. 6.Hospital Costa del SolMarbellaSpain

Personalised recommendations