Antonie van Leeuwenhoek

, Volume 89, Issue 3–4, pp 417–422 | Cite as

Enological functions of parietal yeast mannoproteins



Parietal yeast mannoproteins play a very important role in the overall vinification process. Their production and release, both during winemaking and aging on lees, depends on the specific yeast strain and the nutritional conditions. The following enological functions of parietal yeast mannoproteins have been described: (a) adsorption of ochratoxin A; (b) combination with phenolic compounds; (c) increased growth of malolactic bacteria; (d) inhibition of tartrate salt crystallization; (e) interaction with flor wines; (f) prevention of haze; (g) reinforcement of aromatic components; (h) wine enrichment during aging on fine lees; (i) yeast flocculation and autolysis in sparkling wines. Further discoveries related to their enological functions are foreseeable. Yeast-derived mannoproteins may well induce chemical, sensorial and health benefits, thus greatly improving wine quality.


Adsorption of ochratoxin A Aging on fine lees Flor sherry type products Parietal yeast mannoproteins Phenolic compounds Prevention of haze 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexandre H., Blanchet S., Charpentier C. (2000). Identification of a 49-kDa hydrophobic cell wall mannoprotein present in velum yeast which may be implicated in velum formation. FEMS Microbiol. Lett. 185:147–150PubMedGoogle Scholar
  2. Anon (2005). Commission Regulation (EC) no 123/2005 of 26 January 2005 amending Regulation (EC) no 466/2001 as regards ochratoxin A. Off. J. Eur. Union L25: 3–5Google Scholar
  3. Ballou C. (1976). Structure and biosynthesis of the mannan component of the yeast cell envelope. Adv. Microbiol. Physiol. 14:93–158CrossRefGoogle Scholar
  4. Baptista A.S., Horii J., Calori-Domingues M.A., Micotti da Glória E., Salgado J.M., Vizioli M.R. (2004). The capacity of manno-oligosaccharides, thermolysed yeast and active yeast to attenuate aflatoxicosis. World J. Microbiol. Biotechnol. 20:475–481CrossRefGoogle Scholar
  5. Barriga J.A.T., Cooper D.G., Idziak E.S., Cameron D.R. (1999). Components of the bioemulsifier from Saccharomyces cerevisiae. Enzyme Microb. Tech. 25:96–102CrossRefGoogle Scholar
  6. Bauer J. (1994). Möglichkeiten zur Entgiftung mykotoxinhaltiger Futtermittel. Monatsh. Veterinärmed. 49:175–181Google Scholar
  7. Bejaoui H., Mathieu F., Taillandier P., Lebrihi A. (2004). Ochratoxin A removal in synthetic and natural grape juices by selected oenological Saccharomyces strains. J. Appl. Microbiol. 97:1038–1044PubMedCrossRefGoogle Scholar
  8. Boivin S., Feuillat M., Alexandre H., Charpentier C. (1998). Effect of must turbidity on cell wall porosity and macromolecule excretion of Saccharomyces cerevisiae cultivated on grape juice. Am. J. Enol. Vitic. 4:325–331Google Scholar
  9. Brzobohaty B., Kovar L. (1986). Factors enhancing genetic transformation of intact yeast cells modify cell wall porosity. J. Gen. Microbiol. 132:3089–3093PubMedGoogle Scholar
  10. Cameron D.R., Cooper D.G., Neufeld R.J. (1988). The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier. Appl. Environ. Microbiol. 54:1420–1425PubMedGoogle Scholar
  11. Caridi A., Cufari A., Galvano F., Geria M., Postorino S., Tafuri A. and Ritieni A. 2004a. New microbiological approach to reduce ochratoxin levels in alcoholic beverages. 19th International ICFMH Symposium, Portorož, Slovenia, 264 p.Google Scholar
  12. Caridi A., Cufari A., Lovino R., Palumbo R., Tedesco I. (2004b). Influence of yeast on polyphenols composition of wine. Food Technol. Biotechnol. 42:37–40Google Scholar
  13. Caridi A., Galvano F., Tafuri A. and Ritieni A. 2005. Ochratoxin A removal during alcoholic fermentation. First International Conference on Environmental, Industrial and Applied Microbiology, BioMicroWorld2005, Badajoz, Spain, 518 pp.Google Scholar
  14. Charpentier C., Feuillat M. (1993). Yeast autolysis. In: Fleet G.H. (eds), Wine Microbiology and Biotechnology. Harwood Academic Publishers, Chur, Switzerland, pp. 225–242Google Scholar
  15. Chatonnet P., Dubourdieu D., Boidron J.N. (1992). Incidence des conditions de fermentation et d’élevage des vins blancs secs en barriques sur leur composition en substances cédées par le bois de chêne. Sci. Aliments 12:665–685Google Scholar
  16. De  Nobel J.G., Dijkers C., Hooiberg E., Klis F.M. (1989). Increased cell wall porosity in Saccharomyces cerevisiae after treatment with dithiothreitol or EDTA. J. Gen. Microbiol. 135:2077–2084Google Scholar
  17. De Nobel J.G., Klis F.M., Priem J., Munnik T., van den Ende H. (1990). The glucanase-soluble mannoproteins limit cell wall porosity in Saccharomyces cerevisiae. Yeast 6:491–499PubMedCrossRefGoogle Scholar
  18. Devegowda G., Raju M.V.L.N., Swamy H.V.L.N. (1998). Mycotoxins: novel solutions for their counteraction. Feedstuffs 70:12–15Google Scholar
  19. Dos Santos A.M., Feuillat M., Charpentier C. (2000). Flor yeast metabolism in a model system similar to the cellar aging of the French “Vin jaune”. Evolution of some by-products, nitrogen compounds and polysaccharides. Vitis 39:129–134Google Scholar
  20. Escot S., Feuillat M., Dulau L., Charpentier C. (2001). Release of polysaccharides by yeast and the influence of polysaccharides on colour stability and wine astringency. Aust. J. Grape Wine Res. 7:153–159Google Scholar
  21. Feuillat M. 1998. Autolyse de levures. In: Flanzy C. (ed.), Oenologie: Fondements Scientifiques et technologiques. Lavoisier, Paris, France, pp. 444–454.Google Scholar
  22. Feuillat M. (2003). Yeast macromolecules: origin, composition and enological interest. Am. J. Enol. Vitic. 54:211–213Google Scholar
  23. Feuillat M., Peyron D., Berger J.L. (1987). Influence de la microfiltration tangentielle des vins sur leur composition physicochimique et leurs caractères sensoriels. Bull. OIV 60:227–244Google Scholar
  24. Fleet G.H. (1991). Cell walls. In: Rose A.H., Harrison J.S. (eds), The Yeasts 2nd edn, Vol 4. Academic Press, New York USA, pp. 199–277Google Scholar
  25. Fleet G.H. (2003). Yeast interaction and wine flavour. Int. J. Food Microbiol. 86:11–22PubMedCrossRefGoogle Scholar
  26. Friis J., Ottolenghi P. (1970). The genetically determined binding of alcian blue by a minor fraction of yeast cell walls. C.R. Trav. Lab. Carlsberg. 37:327–341PubMedGoogle Scholar
  27. Gerbaud V., Gabas N., Laguerie C., Blouin J., Vidal S., Moutounet M., Pellerin P. (1996). Effect of wine polysaccharides on the nucleation of potassium hydrogen tartrate in model solutions. Trans. I. Chem. E 74:782–790Google Scholar
  28. Guilloux-Benatier M., Chassagne D. (2003). Comparison of components released by fermented or active dried yeasts after aging on lees in a model wine. J. Agric. Food Chem. 51:746–751PubMedCrossRefGoogle Scholar
  29. Guilloux-Benatier M., Chassagne D., Alexandre H., Charpentier C., Feuillat M. (2001). Influence de l’autolyse des levures après fermentation sur le développement de Brettanomyces/Dekkera dans le vin. J. Int. Sci. Vigne Vin 35:157–164Google Scholar
  30. Guilloux-Benatier M., Feuillat M. (1991). Utilisation d’adjuvants d’origine levurienne pour améliorer l’ensemencement des vins en bactéries sélectionnées. Rev. Fr. Oenolog. 132:51–55Google Scholar
  31. Guilloux-Benatier M., Guerreau J., Feuillat M. (1995). Influence of initial colloid content on yeast macromolecule production and on the metabolism of wine microorganisms. Am. J. Enol. Vitic. 46:486–492Google Scholar
  32. Howes A.D. and Newman K.E. 2000. Compositions and methods for removal of mycotoxins from animal feed. U.S. US 6045834.Google Scholar
  33. Huwig A., Freimund S., Käppeli O., Dutler H. (2001). Mycotoxin detoxication of animal feed by different adsorbents. Toxicol. Lett. 122:179–188PubMedCrossRefGoogle Scholar
  34. Jigami Y., Odani T. (1999). Mannosylphosphate transfer to yeast mannan. Biochim. Biophys. Acta 1426:335–345PubMedGoogle Scholar
  35. Klis F.M., Mol P., Hellingwerf K., Brul S. (2002). Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 26:239–256PubMedGoogle Scholar
  36. Kunst A., Van Schie B.J., Schmedding D.J.M. and Veenema M.J. 1997. Emulsifier from yeast. Eur. Pat. Appl. EP 790316.Google Scholar
  37. Ledoux V., Dulau L., Dubourdieu D. (1992). Interprétation de l’amélioration de la stabilité protéique des vins au cours de l’élevage sur lies. J. Intern. Sci. Vigne Vin 26:239–251Google Scholar
  38. Llaubères R.M., Dubourdieu D., Villetaz J.C. (1987). Exocellular polysaccharides from Saccharomyces in wine. J. Sci. Food Agric. 41:277–286Google Scholar
  39. Lubbers S., Leger B., Charpentier C., Feuillat M. (1993). Essai colloides protecteurs d’extraits de parois de levures sur la stabilité tartrique d’un vin modêle. J. Intern. Sci. Vigne Vin 27:13–22Google Scholar
  40. Lubbers S., Voilley A., Feuillat M., Charpentier C. (1994). Influence of mannoproteins from yeasts on the aroma intensity of a model wine. Lebensm.-Wiss. Technol. 27:108–114CrossRefGoogle Scholar
  41. Martínez-Rodriguez A.J., Carrascosa A.V., Polo M.C. (2001). Release of nitrogen compounds to the extracellular medium by three strains of Saccharomyces cerevisiae during induced autolysis in a model wine system. Int. J. Food Microbiol. 68:155–160PubMedCrossRefGoogle Scholar
  42. Moine-Ledoux V., Dubourdieu D. (2002). Rôle des mannoprotéines de levures vis à vis de la stabilisation tartrique des vins. Bull. OIV 75:471–482Google Scholar
  43. Piotrowska M., Zakowska Z. (2000). The biodegradation of ochratoxin A in food products by lactic acid bacteria and baker’s yeast. Food Biotechnol. 17:307–310Google Scholar
  44. Ribéreau-Gayon P., Dubourdieu D., Donèche B., Lonvaud A. (2000). Handbook of Enology. Volume 1. The Microbiology of Wine and Vinifications. John Wiley & Sons, LTD, Chichester – New York – Weinheim – Brisbane – Singapore – TorontoGoogle Scholar
  45. Ringot D., Lerzy B., Bonhoure J.P., Auclair E., Oriol E., Larondelle Y. (2005). Effect of temperature on in vitro ochratoxin A biosorption onto yeast cell wall derivatives. Process Biochem. 40:3008–3016CrossRefGoogle Scholar
  46. Riou V., Vernhet A., Doco T., Moutounet M. (2002). Aggregation of grape seed tannins in model wine – effect of wine polysaccharides. Food Hydrocolloid 16:17–23CrossRefGoogle Scholar
  47. Rosi I., Gheri A., Domizio P., Fia G. (1999). Production de macromolécules pariétales de Saccharomyces cerevisiae au cours de la fermentation et leur influence sur la fermentation mololactique. Rev. Oenolog. Techn. Vitivinic. Oenologiq. 94:18–20Google Scholar
  48. Samant S.K., Singhal R.S., Kulkaml P.R., Rege D.V. (1993). Protein–polysaccharide interactions: a new approach in food formulation. Int. J. Food Sci. Tech. 28:547–562CrossRefGoogle Scholar
  49. Sanz P., Herrero E., Sentandreu R. (1985). Autolytic release of mannoproteins from cell walls of Saccharomyces cerevisiae. J. Gen. Microbiol. 131:2925–2932Google Scholar
  50. Scott P.M., Kanhere S.R., Lawrence G.A., Daley E.F., Farber J.M. (1995). Fermentation of wort containing added ochratoxin A and fumonisins B1 and B2. Food Addit. Contam. 12:31–40PubMedGoogle Scholar
  51. Suzzi G., Romano P., Zambonelli C. (1984). Flocculation of wine yeasts: frequency, differences, and stability of the character. Can. J. Microbiol. 30:36–39CrossRefGoogle Scholar
  52. Vasserot Y., Caillet S., Maujean A. (1997). Study of anthocyanin adsorption by yeast lees. Effect of some physicochemical parameters. Am. J. Enol. Vitic. 48:433–437Google Scholar
  53. Vernhet A., Pellerin P., Prieur C., Osmianski J., Moutounet M. (1996). Charge properties of some grape and wine polysaccharide and polyphenolic fractions. Am. J. Enol. Vitic. 47:25–29Google Scholar
  54. Waters E.J., Wallace W., Tate M.E., Williams P.J. (1993). Isolation and partial characterization of a natural haze protective factor from wine. J. Agr. Food Chem. 41:724–730CrossRefGoogle Scholar
  55. Waters E.J., Pellerin P., Brillouet J.M. (1994). A Saccharomyces mannoprotein that protects wine from protein haze. Carbohyd. Polym. 23:185–191CrossRefGoogle Scholar
  56. Zaghini A., Roncada P., Anfossi P., Rizzi L. (1998). Aflatoxin B1 oral administration to laying hens: effects on hepatic MFO activities and efficacy of a zeolite to prevent aflatoxicosis B1. Rev. Med. Vet. 6:668–669Google Scholar
  57. Zambonelli C., Grazia L., Giudici P., Tini V. (1991). Autolysogeny and high isobutyl alcohol production in Saccharomyces cerevisiae. J. Food Biochem. 15:281–283Google Scholar
  58. Zimmerli B., Dick R. (1996). Ochratoxin A in table wine and grape-juice: occurrence and risk assessment. Food Addit. Contam. 13:655–668PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Agro-Forestry and Environmental Sciences and TechnologiesMediterranea University of Reggio CalabriaGallina, Piazza San Francesco 7Reggio CalabriaItaly

Personalised recommendations