Antonie van Leeuwenhoek

, Volume 89, Issue 3–4, pp 485–494

Genome-wide expression profile of the mnn2Δ mutant of Saccharomyces cerevisiae

  • Isaac Corbacho
  • Isabel Olivero
  • Stefan Hohmann
  • Per Sunnerhagen
  • Luis  M. Hernández
Article

Abstract

The MNN2 gene of S. cerevisiae encodes an α (1,2) mannosyl transferase required for branching the outer chain of N-linked oligosaccharides (Rayner J.C. and Munro S. 1998. J. Biol. Chem. 273: 26836–26843) and it also seems to have some effect on the transfer of mannosyl phosphate groups to the inner core (Olivero I. et al. 2000. FEBS Lett. 475: 111–116). In order to reveal possible interactions of MNN2 expression with other cellular pathways, we analyzed the transcriptome of the deletion mutant S. cerevisiae  mnn2Δ using cDNA microarrays. We found 151 genes that showed an altered expression level of ≥2-fold, 58 of them up-regulated and 93 down-regulated. Quite a high proportion of these genes (29%) encode unclassified proteins. In contrast to other defects affecting the integrity of the cell wall, deletion of MNN2 does not stimulate the expression of any of the genes included in the previously defined ‘cell wall compensatory cluster’ (Lagorce et al. 2003. J. Biol. Chem. 278: 20345–20357). We also found that 15% of the selected genes are related to central metabolic pathways. In addition, the mnn2Δ strain seems to have a certain level of stimulation of DNA processing reactions while some genes involved in intracellular transport pathways are under-regulated.

Keywords

MNNCell wall DNA microarrays Mannoprotein Mannosyl phosphorylation N-glycosylation Saccharomyces cerevisiae 

Abbreviations

CWI

cell wall integrity pathway

ldb

low dye binding

mnn

mannan defective

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballou C.E. (1990). Isolation, characterization and properties of Saccharomyces cerevisiae mnn mutants with non-conditional protein glycosylation defects. Methods Enzymol. 185: 440–470PubMedCrossRefGoogle Scholar
  2. Boorsma A., de Nobel H., ter Riet B., Bargmann B., Brul S., Hellingwerf K.J. and Klis F.M. (2004). Characterization of the transcriptional response to cell wall stress in Saccharomyces cerevisiae. Yeast 21: 413–427PubMedCrossRefGoogle Scholar
  3. Brazma A., Hingamp P., Quackenbush J., Sherlock G., Spellman P., Stoeckert C., Aach J., Ansorge W., Ball C.A., Causton H.C., Gaasterland T., Glenisson P., Holstege F.C., Kim I.F., Markowitz V., Matese J.C., Parkinson H., Robinson A., Sarkans U., Schulze-Kremer S., Stewart J., Taylor R., Vilo J. and Vingron M. (2001). Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet. 29: 365–371PubMedCrossRefGoogle Scholar
  4. Burda P. And Aebi M. (1999). The dolichol pathway of N-linked glycosylation. Biochim. Biophys. Acta. 1426: 239–258PubMedGoogle Scholar
  5. Corbacho I., Olivero I. and Hernández L.M. (2004). Identification of low dye binding (ldb) mutants of Saccharomyces cerevisiae. FEMS Yeast Res. 4: 437–444PubMedCrossRefGoogle Scholar
  6. Corbacho I., Olivero I. and Hernández L.M. (2005). A genome-wide screen for Saccharomyces cerevisiae nonessential genes involved in mannosyl phosphate transfer to mannoprotein-linked oligosaccharides. Fungal Genet. Biol. 42: 773–790PubMedCrossRefGoogle Scholar
  7. Dean N. (1999). Asparagine-linked glycosylation in the yeast Golgi. Biochim. Biophys. Acta 1426: 309–322PubMedGoogle Scholar
  8. De Groot P.W.J., Ram A.F. and Klis F.M. (2005). Features and functions of covalently linked proteins in fungal cell walls. Fungal. Genet. Biol. 42: 657–675PubMedCrossRefGoogle Scholar
  9. Erasmus D.J., van der Merwe G.K. and van Vuuren H.J. (2003). Genome-wide expression analyses: Metabolic adaptation of Saccharomyces cerevisiae to high sugar stress. FEMS Yeast Res. 3: 375–399PubMedCrossRefGoogle Scholar
  10. Hauser N.C., Vingron M., Scheideler M., Krems B., Hellmuth K., Entian K.D. and Hoheisel J.D. (1998). Transcriptional profiling on all open reading frames of Saccharomyces cerevisiae. Yeast 14: 1209–1221PubMedCrossRefGoogle Scholar
  11. Hernández L.M., Ballou L., Alvarado E., Tsai P.K. and Ballou C.E. (1989). Structure of the phosphorylated N-linked oligosaccharides from the mnn9 and mnn10 mutants of Saccharomyces cerevisiae. J. Biol. Chem. 264: 13648–13659PubMedGoogle Scholar
  12. Kleinschmidt M., Grundmann O., Bluthgen N., Mosch H.U. and Braus G.H. (2005). Transcriptional profiling of Saccharomyces cerevisiae cells under adhesion-inducing conditions. Mol. Genet. Genomics 273: 382–393PubMedCrossRefGoogle Scholar
  13. Klis F.M., De Groot P., Brul S. and Hellingwerf K. 2004. Molecular organization and biogenesis of the cell wall. In: Dickinson J.R., Schweizer M. (eds), The Metabolism and Molecular Physiology of Saccharomyces Cerevisiae. 2nd ed. CRC Press, Boca Raton, FL, pp. 117–139.Google Scholar
  14. Lagorce A., Hauser N.C., Labourdette D., Rodriguez C., Martin-Yken H., Arroyo J., Hoheisel J.D. and Francois J. (2003). Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 278: 20345–20357PubMedCrossRefGoogle Scholar
  15. Levin D.E. (2005). Cell wall integrity signalling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 69: 262–291PubMedCrossRefGoogle Scholar
  16. Mañas P., Olivero I., Avalos M. and Hernández L.M. (1997). Isolation of new nonconditional Saccharomyces cerevisiae mutants defective in asparagine-linked glycosylation. Glycobiology 7: 487–497PubMedGoogle Scholar
  17. Mañas P., Olivero I. and Hernández L.M. (1998). Proteolytic processing of a secreted glycoprotein and O-glycosylation of mannoproteins are affected in the N-glycosylation mutant Saccharomyces cerevisiae ldb1. Biochim. Biophys. Acta 1380: 320–328PubMedGoogle Scholar
  18. Nakamura T., Ohmoto T., Hirata D., Tsuchiya E., Miyakawa T. (1997). Yeast Crv4/Ttp1, a predicted type II membrane protein, is involved in an event important for growth, functionally overlapping with the event regulated by calcineurin- and Mpk1-mediated pathways. Mol. Gen. Genet. 256: 481–487PubMedCrossRefGoogle Scholar
  19. Olivero I., Mañas P. and Hernández L.M. (2000). The mnn2 mutant of accharomyces cerevisiae is affected in phosphorylation of N-linked oligosaccharides. FEBS Lett. 475: 111–116PubMedCrossRefGoogle Scholar
  20. Olivero I., Corbacho I. and Hernández L.M. (2003). The ldb1 mutant of Saccharomyces cerevisiae is defective in Pmr1p, the yeast secretory pathway/Golgi Ca2+/Mn2+-ATPase. FEMS Microbiol. Lett. 219: 137–142PubMedCrossRefGoogle Scholar
  21. Rayner J.C. and Munro S. (1998). Identification of the MNN2 and MNN5 mannosyl transferases required for forming and extending the mannose branches of the outer chain mannans of Saccharomyces cerevisiae. J. Biol. Chem. 273: 26836–26843PubMedCrossRefGoogle Scholar
  22. Tong A.H., Lesage G., Bader G.D., Ding H., Xu H., Xin X., Young J., Berriz G.F., Brost R.L., Chang M., Chen Y., Cheng X., Chua G., Friesen H., Goldberg D.S., Haynes J., Humphries C., He G., Hussein S., Ke L., Krogan N., Li Z., Levinson J.N., Lu H., Menard P., Munyana C., Parsons A.B., Ryan O., Tonikian R., Roberts T., Sdicu A.M., Shapiro J., Sheikh B., Suter B., Wong S.L., Zhang L.V., Zhu H., Burd C.G., Munro S., Sander C., Rine J., Greenblatt J., Peter M., Bretscher A., Bell G., Roth F.P., Brown G.W., Andrews B., Bussey H., Boone C. (2004) Global mapping of the yeast genetic interaction network. Science 303: 808–813PubMedCrossRefADSGoogle Scholar
  23. Zakrzewska A., Boorsma A., Brul S., Hellingwerf K.J. and Klis F.M. (2005). Transcriptional response of Saccharomyces cerevisiae to the plasma membrane-perturbing compound chitosan. Eukaryot. Cell 4:703–715PubMedCrossRefGoogle Scholar

Web pages

  1. EUROSCARF (European Saccharomyces cerevisiae archive for functional analysis): http://www.uni-frankfurt.de/fb15/mikro/euroscarf/index.htmlGoogle Scholar
  2. MIPS (Munich Information center for protein sequences): http://mips.gsf.de/Google Scholar
  3. SGD (Saccharomyces cerevisiae genome database): http://www.yeastgenome.org/Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Isaac Corbacho
    • 1
  • Isabel Olivero
    • 1
  • Stefan Hohmann
    • 2
  • Per Sunnerhagen
    • 2
  • Luis  M. Hernández
    • 1
  1. 1.Department of MicrobiologyUniversity of ExtremaduraBadajozSpain
  2. 2.Department of Cell and Molecular BiologyGöteborg University GöteborgSweden

Personalised recommendations