Antonie van Leeuwenhoek

, Volume 89, Issue 2, pp 239–249 | Cite as

Occurrence and pathogenic potential of Bacillus cereus group bacteria in a sandy loam

  • Niels Bohse Hendriksen
  • Bjarne Munk Hansen
  • Jens Efsen Johansen
Article

Abstract

The major part (94%) of the Bacillus cereus-like isolates from a Danish sandy loam are psychrotolerant Bacillus weihenstephanensis according to their ability to grow at temperatures below 7 °C and/or two PCR-based methods, while the remaining 6% are B. cereus. The Bacillus mycoides-like isolates could also be␣divided into psychrotolerant and mesophilic isolates. The psychrotolerant isolates of B. mycoides could␣be discriminated from the mesophilic by the two PCR-based methods used to characterize B.␣weihenstephanensis. It is likely that the mesophilic B. mycoides strains are synonymous with Bacillus pseudomycoides, while psychrotolerant B. weihenstephanensis, like B. mycoides, are B. mycoides senso stricto. B. cereus is known to produce a number of factors, which are involved in its ability to cause gastrointestinal and somatic diseases. All the B. cereus-like and B. mycoides like isolates from the sandy loam were investigated by PCR for the presence of 12 genes encoding toxins. Genes for the enterotoxins (hemolysin BL and nonhemolytic enterotoxin) and the two of the enzymes (cereolysin AB) were present in the major part of the isolates, while genes for phospolipase C and hemolysin III were present in fewer isolates, especially among B. mycoides like isolates. Genes for cytotoxin K and the hemolysin II were only present in isolates affiliated to B. cereus. Most of the mesophilic B. mycoides isolates did not possess the genes for the nonhemolytic enterotoxin and the cereolysin AB. The presence of multiple genes coding for virulence factors in all the isolates from the B. cereus group suggests that all the isolates from the sandy loam are potential pathogens.

Keywords

Bacillus mycoides Bacillus pseudomycoides Bacillus weihenstephanensis enterotoxins phospholipases psychrotolerant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agata N., Ohta M., Mori M., Isobe M. (1995a). A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus. FEMS Microbiol. Lett. 129:17–19Google Scholar
  2. Agata N., Ohta M., Arakawa Y., Mori M. (1995b). The Bcet gene of Bacillus cereus encodes an enterotoxic protein. Microbiology 141:983–988, Part 4CrossRefGoogle Scholar
  3. Asano S., Nukumizu Y., Bando H., Iizuka T., Yamamoto T. (1997). Cloning of novel enterotoxin genes from Bacillus cereus and Bacillus thuringiensis: Appl. Environ. Microbiol. 63:1054–1057PubMedGoogle Scholar
  4. Baida G.E., Kuzmin N.P. (1995). Cloning and primary structure of a new hemolysin gene from Bacillus-cereus. Biochim. Biophys. Acta 1264:151–154PubMedGoogle Scholar
  5. Baida G., Budarina Z.I., Kuzmin N.P., Solonin A.S. (1999). Complete nucleotide sequence and molecular characterization of hemolysin II gene from Bacillus cereus. FEMS Microbiol. Lett. 180:7–14PubMedCrossRefGoogle Scholar
  6. Bavykin S.G., Lysov Y.P., Zakhariev V., Kelly J.J., Jackman J., Stahl D.A., Cherni A. (2004). Use of 16S rRNA, 23S rRNA, and gyrB gene sequence analysis to determine phylogenetic relationships of Bacillus cereus group microorganisms. J. Clin. Microbiol. 42:3711–3730CrossRefPubMedGoogle Scholar
  7. Bell J.A., Friedman S.B. (1994). Genetic-structure and diversity within local-populations of Bacillus mycoides. Evolution 48:1698–1714CrossRefGoogle Scholar
  8. Budarina Z.I., Sinev M.A., Mayorov S.G., Tomashevski A.Y., Shmelev I.V., Kuzmin N.P. (1994). Hemolysin-II is more characteristic of Bacillus thuringiensis than Bacillus cereus. Arch. Microbiol. 161:252–257PubMedGoogle Scholar
  9. Cheun H.I., Makino S.I., Wataral M., Shirahata T., Uchida I., Takeshi K. (2001). A simple and sensitive detection system for Bacillus anthracis in meat and tissue. J. Appl. Microbiol. 91:421–426CrossRefPubMedGoogle Scholar
  10. Christiansson A., Bertilsson J., Svensson B. (1999). Bacillus cereus spores in raw milk: factors affecting the contamination of milk during the grazing period. J. Dairy Sci. 82:305–314PubMedCrossRefGoogle Scholar
  11. Damgaard P.H., Larsen H.D., Hansen B.W., Bresciani J., Jorgensen K. (1996). Enterotoxin-producing strains of Bacillus thuringiensis isolated from food. Lett. Appl. Microbiol. 23:146–150PubMedCrossRefGoogle Scholar
  12. Ehling-Schulz M., Fricker M., Scherer S. (2004). Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol. Nutr. Food Res. 48:479–487CrossRefPubMedGoogle Scholar
  13. Ehling-Schulz M., Vukov N., Schulz A., Shaheen R., Andersson M., Martlbauer E., Scherer S. (2005). Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for cereulide production in emetic Bacillus cereus. Appl. Environ. Microbiol. 71:105–113CrossRefPubMedGoogle Scholar
  14. Farrar W.E. and Reboli A.C. 1991. The Genus Bacillus – Medical. The Prokaryotes, 2nd ed. Springer Verlag, New York, pp. 1746–1768Google Scholar
  15. Francis K.P., Mayr R., von Stetten F., Stewart G.S.A.B., Scherer S. (1998). Discrimination of psychrotrophic and mesophilic strains of the Bacillus cereus group by PCR targeting of major cold shock protein genes. Appl. Environ. Microbiol. 64:3525–3529PubMedGoogle Scholar
  16. Gilmore M.S., Cruzrodz A.L., Leimesterwachter M., Kreft J., Goebel W. (1989). A Bacillus-cereus cytolytic determinant, cereolysin-AB, which comprises the phospholipase-C and sphingomyelinase genes-nucleotide-sequence and genetic-linkage. J. Bacteriol. 171:744–753PubMedGoogle Scholar
  17. Glare T. R. and O’Callaghan M. 2000. Bacillus thuringiensis: Biology, Ecology and Safety. John Wiley & Sons, LtdGoogle Scholar
  18. Granum P. E. 2001. Bacillus cereus. Food Microbiology: Fundamentals and Frontiers, 2nd. ed. ASM Press, pp. 373–381Google Scholar
  19. Granum P.E., O’Sullivan K., Lund T. (1999). The sequence of the non-haemolytic enterotoxin operon from Bacillus cereus. FEMS Microbiol. Lett. 177:225–229PubMedGoogle Scholar
  20. Guinebretiere M.H., Broussole V., Nguyen-The C. (2002). Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains. J. Clin. Microbiol. 40:3053–3056CrossRefPubMedGoogle Scholar
  21. Hansen B.M., Hendriksen N.B. (1998). Bacillus thuringiensis and B. cereus toxins. IOBC Bull. 21(4):221–224Google Scholar
  22. Hansen B.M., Hendriksen N.B. (2001). Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis. Appl. Environ. Microbiol. 67:185–189CrossRefPubMedGoogle Scholar
  23. Hansen B.M., Hoiby P.E., Jensen G.B., Hendriksen N.B. (2003). The Bacillus cereus bceT enterotoxin sequence reappraised. FEMS Microbiol. Lett. 223:21–24CrossRefPubMedGoogle Scholar
  24. Hansen B.M., Damgaard P.H., Eilenberg J., Pedersen J.C. (1998). Molecular and phenotypic characterization of Bacillus thuringiensis isolated from leaves and insects. J. Invert. Pathol. 71:106–114CrossRefGoogle Scholar
  25. Hansen B.M., Leser T.D., Hendriksen N.B. (2001). Polymerase chain reaction assay for the detections of Bacillus cereus group cells. FEMS Microbiol. Lett. 202:209–213PubMedCrossRefGoogle Scholar
  26. Harmon S.M. (1982). New method for differentiating members of the Bacillus-cereus group – collaborative study. J. Assoc. Off. Anal. Chem. 65:1134–1139PubMedGoogle Scholar
  27. Heinrichs J.H., Beecher D.J., Macmillan J.D., Zilinskas B.A. (1993). Molecular-cloning and characterization of the HBLA gene encoding the B-component of hemolysin BL from Bacillus-cereus. J. Bacteriol. 175:6760–6766PubMedGoogle Scholar
  28. Helgason E., Okstad O.A., Caugangt D.A., Johansen H.A., Fouet A., Mock M., Hegna I., Kolsto A.B. (2000). Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis - One species on the basis for genetic evidence. Appl. Environ. Microbiol. 66:2627–2630CrossRefPubMedGoogle Scholar
  29. Hoffmaster A.R., Ravel J., Rasko D.A., Chapman G.D., Chute M.D., Marston C.K., De B.K., Sacchi C.T., Fitzgerald C., Mayer L.W., Maiden M.C.J., Priest F.G., Barker M., Jiang L.X., Cer R.Z., Rilstone J., Peterson S.N., Weyant R.S., Galloway D.R., Read T.D., Popovic T., Fraser C.M. (2004). Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. PNAS 101:8449–8454CrossRefPubMedGoogle Scholar
  30. Hsieh Y.M., Sheu S.J., Chen Y.L., Tsen H.Y. (1999). Enterotoxigenic profiles and polymerase chain reaction detection of Bacillus cereus group cells and B-cereus strains from foods and food-borne outbreaks. J. Appl. Microbiol. 87:481–490CrossRefPubMedGoogle Scholar
  31. Ivanova N., Sorokin A., Anderson I., Galleron N., Candelon B., Kapatral V., Bhattacharyya A., Reznik G., Mikhailova N., Lapidus A., Chu L., Mazur M., Goltsman E., Larsen N., D’Souza M., Walunas T., Grechkin Y., Pusch G., Haselkorn R., Fonstein M., Ehrlich S.D., Overbeek R., Kyrpides N. (2003). Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423:87–91CrossRefPubMedGoogle Scholar
  32. Jensen G.B., Hansen B.M., Eilenberg J., Mahillon J. (2003). The hidden lifestyles of Bacillus cereus and relatives. Environ. Microbiol. 5:631–640CrossRefPubMedGoogle Scholar
  33. Kuppe A., Evans L.M., McMillen D.A., Griffith O.H. (1989). Phosphatidylinositol-specific phospholipase-C of Bacillus-cereus – cloning, sequencing, and relationship to other phospholipases. J. Bacteriol. 171:6077–6083PubMedGoogle Scholar
  34. Lechner M., Kupke T., Stefanovic S., Gotz F. (1989). Molecular characterization and sequence of phosphatidylinostitol-specific phospholipase C of Bacillus thuringiensis. Mol. Microbiol. 3:621–626PubMedCrossRefGoogle Scholar
  35. Lechner S., Mayr R., Francis K.P., Pruss B.M., Kaplan T., Wiessner-Gunkel E., Stewartz G.S.A.B., Scherer S. (1998). Bacillus weihenstephanensis sp nov is a new psychrotolerant species of the Bacillus cereus group. Int. J. Syst Bacteriol. 48:1373–1382PubMedGoogle Scholar
  36. Lund T., De Buyser M.L., Granum P.E. (2000). A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol. Microbiol. 38:254–261CrossRefPubMedGoogle Scholar
  37. Mantynen V., Lindstrom K. (1998). A rapid PCR-based DNA test for enterotoxic Bacillus cereus. Appl. Environ. Microbiol. 64:1634–1639PubMedGoogle Scholar
  38. Margulis L., Jorgensen J.Z., Dolan S., Kolchinsky R., Rainey F.A., Lo S.C. (1998). The Arthromitus stage of Bacillus cereus: intestinal symbionts of animals. PNAS 95:1236–1241CrossRefPubMedGoogle Scholar
  39. Miles G., Bayley H., Cheley S. (2002). Properties of Bacillus cereus hemolysin II: A heptameric transmembrane pore. Protein Sci. 11:1813–1824CrossRefPubMedGoogle Scholar
  40. Nakamura L.K. (1998). Bacillus pseudomycoides sp. nov. Int. J. Syst. Bacteriol. 48:1031–1035PubMedGoogle Scholar
  41. Nakamura L.K., Jackson M.A. (1995). Clarification of the taxonomy of Bacillus mycoides. Int. J. Syst. Bacteriol. 45:46–49CrossRefGoogle Scholar
  42. Pepper I.L., Gentry T.J. (2002). Incidence of Bacillus anthracis in soil. Soil Sci. 167:627–635CrossRefGoogle Scholar
  43. Pruss B.M., Francis K.P., von Stetten F., Scherer S. (1999a). Correlation of 16S ribosomal DNA signature sequences with temperature-dependent growth rates of mesophilic and psyshrotolerant strains of the Bacillus cereus group. J. Bact. 181:2624–2630Google Scholar
  44. Pruss B.M., Dietrich R., Nibler B., Martlbauer E., Scherer S. (1999b). The hemolytic enterotoxin HBL is broadly distributed among species of the Bacillus cereus group. Appl. Environ. Microbiol. 65:5436–5442Google Scholar
  45. Rasko D.A., Ravel J., Okstad O.A., Helgason E., Cer R.Z., Jiang L.X., Shores K.A., Fouts D.E., Tourasse N.J., Angiuoli S.V., Kolonay J., Nelson W.C., Kojsto A.B., Fraser C.M., Read T.D. (2004). The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pX01. NAR 32:977–988CrossRefPubMedGoogle Scholar
  46. Ryan P.A, Macmillan J.D., Zilinskas B.A. (1997). Molecular cloning and characterization of the genes encoding the L(1) and L(2) components of hemolysin BL from Bacillus cereus. J. Bacteriol. 179:2551–2556PubMedGoogle Scholar
  47. Stenfors L.P., Granum P.E. (2001). Psychrotolerant species from the Bacillus cereus group are not necessarily Bacillus weihenstephanensis. FEMS Microbiol. Lett. 197:223–228PubMedCrossRefGoogle Scholar
  48. Stenfors L.P., Mayr R., Scherer S., Granum P.E. (2002). Pathogenic potential of fifty Bacillus weihenstephaninsis strains. FEMS Microbiol. Lett. 215:47–51PubMedCrossRefGoogle Scholar
  49. Tegiffel M.C., Beumer R.R., Slaghuis B.A., Rombouts F.M. (1995). Occurrence and characterization of (Psychrotrophic) Bacillus-cereus on farms in the Netherlands. Neth. Milk Dairy J. 49:125–138Google Scholar
  50. Travers R.S., Martin P.A.W., Reichelderfer C.F. (1987). Selective process for efficient isolation of soil Bacillus spp. Appl. Environ. Microbiol. 53:1263–1266PubMedGoogle Scholar
  51. Vilas-Boas G., Sanchis V., Lereclus D., Lemos M.V.F., Bourguet D. (2002). Genetic differentiation between sympatric populations of Bacillus cereus and Bacillus thuringiensis. Appl. Environ. Microbiol. 68:1414–1424CrossRefPubMedGoogle Scholar
  52. von Stetten F, Francis K.P., Lechner S., Neuhaus K., Scherer S. (1998). Rapid discrimination of psychrotolerant and mesophilic strains of the Bacillus cereus group by PCR targeting of 16S rDNA. J. Microbiol. Methods 34:99–106CrossRefGoogle Scholar
  53. von Stetten F., Mayr R., Scherer S. (1999). Climatic influence on mesophilic Bacillus cereus and psychrotolerant Bacillus weihenstephanensis populations in tropical, temperate and alpine soil. Environ. Microbiol. 1:503–515CrossRefPubMedGoogle Scholar
  54. Willumsen P.A., Johansen J.E., Karlson U., Hansen B.M. (2005). Isolation and taxonomic affiliation of N-heterocyclic aromatic hydrocarbon-transforming bacteria. Appl. Microbiol. Biotechnol. 67:420–428CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Niels Bohse Hendriksen
    • 1
  • Bjarne Munk Hansen
    • 1
  • Jens Efsen Johansen
    • 1
  1. 1.Department of Environmental Chemistry and MicrobiologyNational Environmental Research InstituteRoskildeDenmark

Personalised recommendations