Antonie van Leeuwenhoek

, Volume 89, Issue 1, pp 109–124 | Cite as

Desulfobacter psychrotolerans sp. nov., a new psychrotolerant sulfate-reducing bacterium and descriptions of its physiological response to temperature changes

  • Irene H. Tarpgaard
  • Antje Boetius
  • Kai FinsterEmail author


A psychrotrolerant acetate-oxidizing sulfate-reducing bacterium (strain akvbT) was isolated from sediment from the northern part of The North Sea with annual temperature fluctuations between 8 and 14 °C. Of the various substrates tested, strain akvbT grew exclusively by the oxidation of acetate coupled to the reduction of sulfate. The cells were motile, thick rods with round ends and grew in dense aggregates. Strain akvbT grew at temperatures ranging from −3.6 to 26.3 °C. Optimal growth was observed at 20 °C. The highest cell specific sulfate reduction rate of 6.2 fmol cell−1 d−1 determined by the ^{35}\hbox{SO}_{4}^{2-} method was measured at 26 °C. The temperature range of short-term sulfate reduction rates exceeded the temperature range of growth by 5 °C. The Arrhenius relationship for the temperature dependence of growth and sulfate reduction was linear, with two distinct slopes below the optimum temperatures of both processes. The critical temperature was 6.4 °C. The highest growth yield (4.3–4.5 g dry weight mol−1 acetate) was determined at temperatures between 5 and 15 °C. The cellular fatty acid composition was determined with cultures grown at 4 and 20 °C, respectively. The relative proportion of cellular unsaturated fatty acids (e.g. 16:1ω7c) was higher in cells grown at 4 °C than in cells grown at 20 °C. The physiological responses to temperature changes showed that strain akvbT was well adapted to the temperature regime of the environment from which it was isolated. Phylogenetic analysis showed that strain akvbT is closest related to Desulfobacter hydrogenophilus, with a 16S rRNA gene sequence similarity of 98.6%. DNA–DNA-hybridization showed a similarity of 32% between D. hydrogenophilus and strain akvbT. Based on phenotypic and DNA-based characteristics we propose that strain akvbT is a member of a new species, Desulfobacter psychrotolerans sp.␣nov.

Key words

Bacteria Marine sediment Methane seep Psychrotolerant Sulfate reduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The study was supported by SNF Grant No. 21-00-0309. Kai Finster thanks the crew of the research vessel R/V Heincke for a very fruitful sampling cruise. We thank Tove Wiegers for her skilful technical assistance, Kasper Kjeldsen for help with the phylogentic analysis and Rodney Herbert for a critical review of the manuscript. The constructive criticism of 3 anonymous reviewers is gratefully acknowledged.


  1. Abildgaard L., Ramsing N.B. and Finster K. (2004). Characterization of the marine propionate-degrading, sulfate-reducing bacterium Desulfofaba fastidiosa sp nov and reclassification of Desulfomusa hansenii as Desulfofaba hansenii comb. nov. Int. J. Syst. Evol. Microbiol. 54: 393–399PubMedCrossRefGoogle Scholar
  2. Bak F. 1988. Sulfatreduzierende bakterien und ihre aktivität im litoralsediment der unteren Güll (Überlinger See) Ph.D. Thesis. In: Mikrobieele Ökologie, KonstanzGoogle Scholar
  3. Bakermans C. and Nealson K.H. (2004). Relationship of critical temperature to macromolecular synthesis and growth yield in Psychrobacter cryopegella. J. Bacteriol. 186: 2340–2345PubMedCrossRefGoogle Scholar
  4. Brandt K.K. and Ingvorsen K. (1997). Desulfobacter halotolerans sp nov, a halotolerant acetate-oxidizing sulfate-reducing bacterium isolated from sediments of Great Salt Lake, Utah. Syst. Appl. Microbiol. Syst Appl Microbiol. 20: 366–373Google Scholar
  5. Brysch K., Schneider C., Fuchs G. and Widdel F. (1987). Lithoautotrophic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum gen-nov, sp-nov. Arch. Microbiol. 148: 264–274CrossRefGoogle Scholar
  6. Cashion P., Holder-Franklin M.A., Mccully J. and Franklin M. (1977). Rapid method for base ratio determination of bacterial DNA. Anal. Biochem. 81: 461–466PubMedCrossRefGoogle Scholar
  7. Christensen D. (1984). Determination of substrates oxidized by sulfate reduction in intact cores of marine-sediments. Limnol. Oceanogr. 29: 189–192Google Scholar
  8. Deley J., Cattoir H. and Reynaert A. 1970. Quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12: 133–142Google Scholar
  9. Delille D. and Perret E. (1989). Influence of temperature on the growth-potential of Southern Polar marine-bacteria. Microbial. Ecol. 18: 117–123CrossRefGoogle Scholar
  10. Denich T.J., Beaudette L.A., Lee H. and Trevors J.T. (2003). Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J. Microbiol. Meth. 52: 149–182CrossRefGoogle Scholar
  11. Dowling N.J.E., Widdel F. and White D.C. (1986). Phospholipid ester-linked fatty-acid biomarkers of acetate-oxidizing sulfate reducers and other sulfide-forming bacteria. J. Gen. Microbiol. 132: 1815–1825Google Scholar
  12. DSMZ 2005. Deutche Sammlung von Mikroorganismen und Zellkulturen GmbH, DSMZ Scholar
  13. Fossing H. and Jørgensen B.B. (1989). Measurement of bacterial sulfate reduction in sediments: evaluation of a single-step chromium reduction method. Biogeochem. 8: 205–222CrossRefGoogle Scholar
  14. Guillou C. and Guespin-Michel J.F. (1996). Evidence for two domains of growth temperature for the psychrotrophic bacterium Pseudomonas fluorescens MF0. Appl. Environ. Microb. 62: 3319–3324PubMedGoogle Scholar
  15. Harder W. and Veldkamp H. (1968). Physiology of an obligately psychrophilic marine Pseudomonas species. J. Appl. Bacteriol. 31: 12–23Google Scholar
  16. Harder W. and Veldkamp H. 1971. Competition of marine psychrophilic bacteria at low temperatures. Antonie van Leuwenhoek 37: 51– 63Google Scholar
  17. Hébraud M. and Potier P. 1999. Cold shock response and low temperature adaptation in psychrotrophic bacteria. J. Mol. Microbiol. Biotechnol. 1: 211–219Google Scholar
  18. Hicks R.E., Amann R.I. and Stahl D.A. (1992). Dual staining of natural bacterioplankton with 4’,6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16s Ribosomal-RNA sequences. Appl. Environ. Microb. 58: 2158–2163PubMedGoogle Scholar
  19. Huss V.A.R., Festl H. and Schleifer K.H. (1983). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst. Appl. Microbiol. 4: 184–192Google Scholar
  20. Isaksen M.F. and Teske A. (1996). Desulforhopalus vacuolatus gen nov, sp nov, a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary. Arch. Microbiol. 166: 160–168CrossRefGoogle Scholar
  21. Isaksen M.F. and Jørgensen B.B. (1996). Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments. Appl. Environ. Microbiol. 62: 408–414PubMedGoogle Scholar
  22. Jørgensen B.B. (1978). A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments I. Measurement with radiotracer techniques. Geomicrobiol. J. 1: 11–27Google Scholar
  23. Jørgensen B.B. (1982). Mineralization of organic-matter in the sea bed - the role of sulfate reduction. Nature. 296: 643–645CrossRefGoogle Scholar
  24. Knoblauch C. and Jørgensen B.B. (1999). Effect of temperature on sulfate reduction, growth rate and growth yield in five psychrophilic sulfate-reducing bacteria from Arctic sediments. Environ. Microbiol. 1: 457–467PubMedCrossRefGoogle Scholar
  25. Knoblauch C., Sahm K. and Jørgensen B.B. (1999). Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigrus oceanense gen. nov., sp nov., Desulfofrigus fragile sp nov., Desulfofaba gelida gen. nov., sp nov., Desulfotalea psychrophila gen. nov., sp nov and Desulfotalea arctica sp nov. Int. J. Syst. Bacteriol. 49: 1631–1643PubMedGoogle Scholar
  26. Kohring L.L., Ringelberg D.B., Devereux R., Stahl D.A., Mittelman M.W. and White D.C. (1994). Comparison of phylogenetic-relationships based on phospholipid fatty-acid profiles and ribosomal-RNA sequence similarities among dissimilatory sulfate-reducing bacteria. Fems Microbiol. Lett. 119: 303–308PubMedCrossRefGoogle Scholar
  27. Könneke M. and Widdel F. (2003). Effect of growth temperature on cellular fatty acids in sulfate-reducing bacteria. Environ. Microbiol. 5: 1064–1070PubMedCrossRefGoogle Scholar
  28. Kuever J., Konneke M., Galushko A. and Drzyzga O. (2001). Reclassification of Desulfobacterium phenolicum as Desulfobacula phenolica comb. nov and description of strain Sax(T) as Desulfotignum balticum gen. nov., sp nov. Int. J. Syst. Evol. Micr. 51: 171–177PubMedGoogle Scholar
  29. Kuykendall L.D., Roy M.A., O’Neill J.J. and Devine T.E. (1988). Fatty-acids, antibiotic-resistance, and deoxyribonucleic-acid homology groups of Bradyrhizobium-japonicum. Int. J. Syst. Bacteriol. 38: 358–361Google Scholar
  30. Lane D.J. (1991). 16/23S rRNA Sequencing. In: Stackebrandt E., Goodfellow M. (eds). Nucleic acid techniques in bacterial systematics. Wiley, Chichester, England.Google Scholar
  31. Lien T. and Beeder J. (1997). Desulfobacter vibrioformis sp. nov., a sulfate reducer from a water-oil separation system. Int. J. Syst. Bacteriol. 47: 1124–1128PubMedCrossRefGoogle Scholar
  32. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S., Jobb G., Forster W., Brettske I., Gerber S., Ginhart A.W., Gross O., Grumann S., Hermann S., Jost R., Konig A., Liss T., Lussmann R., May M., Nonhoff B., Reichel B., Strehlow R., Stamatakis A., Stuckmann N., Vilbig A., Lenke M., Ludwig T., Bode A. and Schleifer K.H. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32: 1363–1371, Scholar
  33. Mesbah M., Premachandran U. and Whitman W.B. (1989). Precise measurement of the G+C content of deoxyribonucleic-acid by High-Performance Liquid-Chromatography. Int. J. Syst. Bacteriol. 39: 159–167Google Scholar
  34. Miller L.T. (1982). Single derivatization method for routine analysis of bacterial whole-cell fatty-acid methyl-esters, including hydroxy-acids. J. Clin. Microbiol. 16: 584–586PubMedGoogle Scholar
  35. Mohr P.W. and Krawiec S. (1980). Temperature characteristics and Arrhenius plots for nominal psychrophiles, mesophiles and thermophiles. J. Gen. Microbiol. 121: 311–317PubMedGoogle Scholar
  36. Morita R.Y. (1975). Psychrophilic bacteria. Bacteriol. Rev. 39: 144–167PubMedGoogle Scholar
  37. Muyzer G., Dewaal E.C. and Uitterlinden A.G. (1993). Profiling of complex microbial-populations by Denaturing Gradient Gel-Electrophoresis analysis of Polymerase Chain Reaction-amplified genes-coding for 16s Ribosomal-RNA. Appl. Environ. Microb. 59: 695–700PubMedGoogle Scholar
  38. Nedwell D.B., Walker T.R., Ellis-Evans J.C. and Clarke A. (1993). Measurements of seasonal rates and annual budgets of organic-carbon fluxes in an Antarctic coastal environment at Signy Island, South Orkney Islands, suggest a broad balance between production and decomposition. Appl. Environ. Microb. 59: 3989–3995PubMedGoogle Scholar
  39. Bundesamt für Seeschifffahrt und Hydrographie. 2004. North-Sea. Sea surface temperatures Scholar
  40. Oude Elferink S.J.W.H., Maas R.N., Harmsen H.J.M. and Stams A.J.M. (1995). Desulforhabdus amnigenus Gen-Nov Sp-Nov, a sulfate reducer isolated from anaerobic granular sludge. Arch. Microbiol. 164: 119–124PubMedGoogle Scholar
  41. Oude Elferink S.J.W.H., Akkermans-van Vliet W.M., Bogte J.J. and Stams A.J.M. (1999). Desulfobacca acetoxidans gen. nov., sp, nov., a novel acetate- degrading sulfate reducer isolated from sulfidogenic granular sludge. Int. J. Syst. Bacteriol. 49: 345–350PubMedGoogle Scholar
  42. Parkes R.J., Gibson G.R., Mueller-Harvey I., Buckingham W.J. and Herbert R.A. (1989). Determination of the substrates for sulfate-reducing bacteria witin marine and estuarine sediments with different rates of sulfate reduction. J. Gen. Microbiol. 135: 175–187Google Scholar
  43. Rabus R., Hansen T. and Widdel F. 2000. The dissimilatory sulfate- and sulfur-reducing Prokaryotes. In: Dworkin M. et al. (eds), The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd edition, release 3.7, November 2, 2001. Springer-Verlag, New York, Scholar
  44. Rabus R., Bruchert V., Amann J. and Konneke M. (2002). Physiological response to temperature changes of the marine, sulfate-reducing bacterium Desulfobacterium autotrophicum. Fems Microbiol. Ecol. 42: 409–417CrossRefPubMedGoogle Scholar
  45. Russell N.J. (1990). Cold adaptation of microorganisms. Phil. Trans. Roy. Soc. B. 326: 595–611CrossRefGoogle Scholar
  46. Russell N.J. and Hamamoto T. 1998. Psychrophiles. In: K.␣Horikoshi and W.D. Grant (eds), Extremophiles: Microbial Life in Extreme Environments. John Wiley & Sons, New York, pp. 25–45Google Scholar
  47. Rütters H., Sass H., Cypionka H. and Rullkotter J. (2001). Monoalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcina variabilis and Desulforhabdus amnigenus. Arch. Microbiol. 176: 435–442PubMedCrossRefGoogle Scholar
  48. Sagemann J., Jørgensen B.B. and Greeff O. (1998). Temperature dependence and rates of sulfate reduction in cold sediments of Svalbard, Arctic Ocean. Geomicrobiol. J. 15: 85–100CrossRefGoogle Scholar
  49. Sass H., Berchtold M., Branke J., Konig H., Cypionka H. and Babenzien H.D. (1998). Psychrotolerant sulfate-reducing bacteria from an oxic freshwater sediment, description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralissp. nov. Syst. Appl. Microbiol. 21: 212–219PubMedGoogle Scholar
  50. Sørensen J., Christensen D. and Jørgensen B.B. (1981). Volatile fatty-acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment. Appl. Environ. Microbiol. 42: 5–11PubMedGoogle Scholar
  51. Tamaoka J. and Komagata K. (1984). Determination of DNA-base composition by reversed-phase High-Performance Liquid-Chromatography. Fems. Microbiol. Lett. 25: 125–128CrossRefGoogle Scholar
  52. Taylor J. and Parkes R.J. (1985). Identifying different populations of sulfate-reducing bacteria within marine sediment systems, using fatty-acid biomarkers. J. Gen. Microbiol. 131: 631–642Google Scholar
  53. Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Moore W.E.C., Murray R.G.E., Stackebrandt E., Starr M.P. and Trüper H.G. (1987). Report of the Ad-Hoc-Committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463–464Google Scholar
  54. Wheeler D.L., Church D.M., Lash A.E., Leipe D.D., Madden, T.L., Pontius J.U., Schuler G.D., Schriml L.M., Tatusova T.A., Wagner L. and Rapp B.A. (2002). Database resources of the National Center for Biotechnology Information: 2002 update. Nucleic Acids Res. 30: 13–16PubMedCrossRefGoogle Scholar
  55. Widdel F. (1987). New types of acetate-oxidizing, sulfate-reducing Desulfobacter species, D-hydrogenophilus sp-nov, D-latus sp-nov, and D-curvatus sp-nov. Arch. Microbiol. 148: 286–291CrossRefGoogle Scholar
  56. Widdel F. and Pfennig N. (1977). New anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum(emend) acetoxidans. Arch. Microbiol. 112: 119–122PubMedCrossRefGoogle Scholar
  57. Widdel F. and Pfennig N. (1981). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty-acids .1. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments - description of Desulfobacter-postgatei gen-nov, sp-nov. Arch. Microbiol. 129: 395–400PubMedCrossRefGoogle Scholar
  58. Widdel F. and Bak F. (1992). Gram-negative mesophilic sulfate-reducing bacteria. In: Balows H., Trüper H.G., Dworkin M., Harder W. and Schleifer K.H. (eds). The prokaryotes. Springer-Verlag, New YorkGoogle Scholar
  59. Wilkinson S.G. (1988). Gram-negative bacteria. In: Ratledge C., Wilkinson S.G. (eds). Microbial Lipids. Academic Press, London, pp. 299–457Google Scholar
  60. Zheng D.D., Alm E.W., Stahl D.A. and Raskin L. (1996). Characterization of universal small-subunit rRNA hybridization probes for quantitative molecular microbial ecology studies. Appl. Environ. Microb. 62: 4504–4513Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Irene H. Tarpgaard
    • 1
  • Antje Boetius
    • 2
    • 3
  • Kai Finster
    • 1
    Email author
  1. 1.Department of MicrobiologyBldg. 540, Institute of Biological Sciences, University of AarhusAarhusDenmark
  2. 2.Max Planck Institute for Marine BiologyBremenGermany
  3. 3.International University BremenBremenGermany

Personalised recommendations