Antonie van Leeuwenhoek

, Volume 89, Issue 1, pp 99–108

Oxidation of arsenite by Thiomonas strains and characterization of Thiomonas arsenivorans sp. nov.

  • Fabienne Battaglia-Brunet
  • Catherine Joulian
  • Francis Garrido
  • Marie-Christine Dictor
  • Dominique Morin
  • Kris Coupland
  • D. Barrie Johnson
  • Kevin B. Hallberg
  • Philippe Baranger
Article

Abstract

A novel bacterium, strain b6T (T=type strain), was isolated from a disused mine site by growth using arsenite [As(III)] as energy source in a simple mineral medium. Cells of strain b6T were rod-shaped, Gram-negative, non-sporulating and motile. Optimum growth occurred at temperatures between 20 and 30 °C, and at pH between 4.0 and 7.5. Strain b6T grew chemoautotrophically on As(III), sulphur and thiosulphate, and also heterotrophically on yeast extract and a variety of defined organic compounds. Several other Thiomonas strains, including the type species Thiomonas (Tm.) intermedia, were able to oxidize As(III), though only strain b6T and strain NO115 could grow using As(III) as sole energy source in the absence of any organic compound. The G+C content of the DNA of strain b6T was 65.1 mol %. Comparative small subunit (SSU) ribosomal RNA (rRNA) analysis indicated that strain b6T belongs to the genus Thiomonas in the β-subdivision of the Proteobacteria. It was closely related to an unnamed Thiomonas strain (NO115) isolated from a Norwegian mining site, though sequence identities between strain b6T and characterized Thiomonas species were less than 95%. DNA–DNA hybridization between strain b6T and the type species of the genus Tm. intermedia showed less than 50% homology. On the basis of phylogenetic and phenotypic characteristics, strain b6T (DSM 16361T, LMG 22795T) is proposed as the type strain of the new species Thiomonas arsenivorans, sp. nov.

Keywords

Arsenic Chemolithoautotrophy Oxidation Thiomonas arsenivorans sp. nov. 

Abbreviations

MCSM

Modified Cheni As-oxidizing population Selective Medium

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson G.L., Love M. and Zeider B.K. (2003). Metabolic energy from arsenite oxidation in Alcaligenes faecalis. J. Phys. IV France 107: 49–52CrossRefGoogle Scholar
  2. Battaglia-Brunet F., Dictor M.-C., Garrid F., Crouzet C., Morin D., Dekeyser K., Clarens M. and Baranger P. (2002). An As(III)-oxidizing bacterial population: selection, characterization, and performance in reactors. J. Appl. Microbiol. 93: 656–667PubMedCrossRefGoogle Scholar
  3. Battaglia-Brunet F., Duquesne K., Dictor M.-C., Garrido F., Bonnefoy V., Baranger P. and Morin D. (2003). Arsenite oxidizing Thiomonas strains isolated from different mining sites. Geophys. Res. Abst. 5: 11069Google Scholar
  4. Bruneel O., Personné J.-C., Casiot C., Leblanc M., Elbaz-Poulichet F. Mahler B.J., Le Flèche A. and Grimont P.A.D. (2004). Mediation of arsenic oxidation by Thiomonas sp. in acid-mine drainage (Carnoules, France). J. Appl. Microbiol. 95: 492–499CrossRefGoogle Scholar
  5. Benson D., Bogusk M.S., Lipman D.J., Ostell J., Ouellette B.F., Rapp B.A. and Wheeler D.L. (1999). GenBank. Nucleic Acids Res. 27: 12–17PubMedCrossRefGoogle Scholar
  6. Cashion P., Holder-Franklin M.A., McCully J. and Franklin M. (1977). A rapid method for base ratio determination of bacterial DNA. Anal. Biochem. 81: 461–466PubMedCrossRefGoogle Scholar
  7. Coupland K., Battaglia-Brunet F., Hallberg K.B., Dictor M.-C., Garrido F. and Johnson D.B. (2004). Oxidation of iron, sulfur and arsenic in mine waters and mine wastes: an important role for novel Thiomonas spp. In: Tsezos M, Hatzikioseyian A & Remoudaki E. (eds). Biohydrometallurgy; a sustainable technology in evolution. National Technical University of Athens, Zografou, Greece, pp. 639–646Google Scholar
  8. De Ley J., Cattoir H. and Reynaerts A. (1970). The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12: 133–142PubMedCrossRefGoogle Scholar
  9. Dennison F., Sen A.M., Hallberg K.B. and Johnson D.B. (2001). Biological versus abiotic oxidation of iron in acid mine drainage waters: an important role for moderately acidophilic, iron-oxidizing bacteria. In: Ciminelli VST & Garcia O. Jr. (eds). Biohydrometallurgy: Fundamentals, Technology and Sustainable Development, part B. Elsevier, Amsterdam, pp. 493–501Google Scholar
  10. Duquesne K. (2004). Rôle des bactéries dans la bioremédiation de l’arsenic dans les eaux acides de drainage de la mine de Carnoules. Thèse de doctorat Université de la Méditerranée, Aix-Marseille IIGoogle Scholar
  11. Escara J.F. and Hutton J.R. (1980). Thermal stability and renaturation of DNA in dimethylsulphoxide solutions: Acceleration of renaturation rate. Biopolymers 19: 1315–1327PubMedCrossRefGoogle Scholar
  12. Felsenstein J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evol. 39: 783–791CrossRefGoogle Scholar
  13. Hall T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic. Acids. Symp. Ser. 41: 95–98Google Scholar
  14. Hallberg K.B. and Johnson D.B. (2003). Novel acidophiles isolated from moderately acidic mine drainage waters. Hydrometallurgy 71: 139–148CrossRefGoogle Scholar
  15. Huber H. and Stetter K.O. (1990). Thiobacillus cuprinus sp. nov., a novel facultatively organotrophic metal-mobilizing bacterium. Appl. Environ. Microbiol. 56: 315–322PubMedGoogle Scholar
  16. Huss V.A.R., Festl H. and Schleifer K.H. (1983). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst. Appl. Microbiol. 4: 184–192Google Scholar
  17. Jahnke K.-D. (1992). Basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD System 2600 spectrometer on a PC/XP/AT type personal computer. J. Microbiol. Methods. 15: 61–73CrossRefGoogle Scholar
  18. Jackson C.R., Langner H.W., Doahoe-Christiansen J., Inskeep W.P. and McDermott T.R. (2001). Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring. Environ. Microbiol. 3: 532–542PubMedCrossRefGoogle Scholar
  19. Johnson D.B. and Hallberg K.B. (2005). Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system. Sci. Total Environ. 338: 81–93PubMedCrossRefGoogle Scholar
  20. Jukes T.H. and Cantor C.R. (1969). Evolution of protein molecules. In: Munro H.N. (eds). Mammalian Protein Metabolism. Academic Press, New York, pp. 211–232Google Scholar
  21. Katayama-Fujimura Y. and Kuraishi H. (1983). Emendation of Thiobacillus perometabolis London and Rittenberg 1967. Int. J. Sys. Bacteriol. 33: 650–651Google Scholar
  22. Lebrun L., Brugna M., Baymann F., Muller D., Lièvremont D., Lett M.-C. and Nitschke W. (2003). Arsenite oxidase, an ancient bioenergetic enzyme. Mol. Biol. Evol. 20: 686–693PubMedCrossRefGoogle Scholar
  23. London J. (1963). Thiobacillus intermedius nov. sp., a novel type of facultative autotroph. Arch. Microbiol. 46: 329–337Google Scholar
  24. London J. and Rittenberg S.C. (1967). Thiobacillus perometabolis nov. sp., a non-autotrophic Thiobacillus. Arch. Microbiol. 59: 218–225Google Scholar
  25. Lovley D.R. and Phillips E.J.P. (1987). Rapid assay for microbially reduced ferric iron in aquatic sediments. Appl. Environ. Microbiol. 53: 1536–1540PubMedGoogle Scholar
  26. Maidak B.L., Cole J.R., Lilburn T.G., Parker C.T., Saxman P.R., Farris R.J., Garrity G.M., Olsen G.J., Schmidt T.M. and Tiedje J.M. (2001). The RDP-II (Ribosomal Database Project). Nucleic Acids Res. 29: 173–174PubMedCrossRefGoogle Scholar
  27. Mesbah M., Premachandran U. and Withman W. (1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J. Syst. Bact. 39: 159–167CrossRefGoogle Scholar
  28. Moreira D. and Amils R. (1997). Phylogeny of Thiobacillus cuprinus and other mixotrophic Thiobacilli: proposal for Thiomonas gen. nov. Int. J. Syst. Bacteriol. 47: 522–528PubMedGoogle Scholar
  29. Saito N. and Nei M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 405–425Google Scholar
  30. Salmassi T.M., Venkateswaren K., Satomi M., Nealson K.H., Newman D.K. and Hering J.G. (2002). Oxidation of arsenite by Agrobacterium albertimagni, AOL15, sp. nov., isolated from Hot Creek, California. Geomicrobiol. J. 19: 53–66CrossRefGoogle Scholar
  31. Santini J.M., Sly L.I., Schnagl R.D. and Macy J.M. (2000). A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl. Environ. Microbiol. 66: 92–97PubMedGoogle Scholar
  32. Santini J.M., Wen L.I.S.A., Comrie D., de Wulf-Durand P. and Macy J.M. (2002). New arsenite-oxidizing bacteria isolated from Australian gold mining environments – phylogenetic relationships. Geomicrobiol J. 19: 67–76CrossRefGoogle Scholar
  33. Shooner F., Bousquet J. and Tyagi R.D. (1996). Isolation, phenotypic characterization, and phylogenetic position of a novel, facultatively autotrophic, moderately thermophilic bacterium, Thiobacillus thermosulfatus sp. nov. Int. J. Syst. Bacteriol. 46: 409–415PubMedGoogle Scholar
  34. Van de Peer Y. and De Wachter R. (1994). TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comp. Applic. Biosci. 10: 569–570PubMedGoogle Scholar
  35. Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Moore W.E.C., Murray R.G.E., Stackebrandt E., Starr M.P. and Trüper H.G. (1987). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463–464CrossRefGoogle Scholar
  36. Weeger W.D., Lievremont D., Perret M., Lagarde F., Hubert J.C., Leroy M. and Lett M.C. (1999). Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. Biometals 12: 141–149PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Fabienne Battaglia-Brunet
    • 1
  • Catherine Joulian
    • 1
  • Francis Garrido
    • 1
  • Marie-Christine Dictor
    • 1
  • Dominique Morin
    • 1
  • Kris Coupland
    • 2
  • D. Barrie Johnson
    • 2
  • Kevin B. Hallberg
    • 2
  • Philippe Baranger
    • 1
  1. 1.BRGM, Environment and Process Division, Biotechnology UnitOrléans cedex 02France
  2. 2.School of Biological SciencesUniversity of WalesBangorUnited Kingdom

Personalised recommendations