Antonie van Leeuwenhoek

, Volume 89, Issue 1, pp 55–69 | Cite as

Characterization of the psychrotolerant acetogen strain SyrA5 and the emended description of the species Acetobacterium carbinolicum

  • Maiken Paarup
  • Michael W. Friedrich
  • Brian J. Tindall
  • Kai Finster


A psychrotolerant, obligate anaerobic, acetogenic bacterium designated strain SyrA5 was isolated from black anoxic sediment of a brackish fjord. Cells were Gram-positive, non-sporeforming rods. The isolate utilized H2/CO2, CO, fructose, glucose, ethanol, ethylene glycol, glycerol, pyruvate, lactate, betaine and the methyl-groups of several methoxylated benzoic derivatives such as syringate, trimethoxybenzoate and vallinate. The optimum temperature for growth was 29 °C, whilst slow growth occurred at 2 °C. The strain grew optimally with NaCl concentrations below 2.7% (w/v), but growth occurred up to 4.3% (w/v) NaCl. Growth was observed in the range from pH 5.9 to 8.5, optimum at pH 8. The G+C content was 44.1 mol%. Based upon 16S rRNA gene sequence analysis and DNA–DNA reassociation studies, the organism was classified in the genus Acetobacterium. Strain SyrA5 shared a 16S rRNA sequence similarity with A. carbinolicum of 100%, a fthfs gene (which codes for the N5,N10 tetrahydrofolate synthetase) sequence identity of 98.5–98.7% (amino acid sequence similarities were 99.4–100%) and a RNA–DNA hybridization homology of 64–68%. Despite a number of phenotypic differences between strain SyrA5 and A. carbinolicum we propose including strain SyrA5 as a subspecies of A. carbinolicum for which we propose the name Acetobacterium carbinolicum subspecies kysingense. The type strain is SyrA5 (=DSM 16427T, ATCC BAA-990).


Acetogenesis Anaerobic growth Brackish sediment Methoxylated aromatic compounds Species description 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The study was supported by NSF grant No. 21-00-0309. The authors thank Peter Westermann for providing help with the measurement of acetate.


  1. Bache R. and Pfennig N. (1981). Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch. Microbiol. 130:255–261CrossRefGoogle Scholar
  2. Balch W.E., Schoberth S., Tanner R.S. and Wolfe R.S. (1977). Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int. J. Syst. Bacteriol. 27:355–361Google Scholar
  3. Braun M. and Gottschalk G. (1982). Acetobacterium wieringae sp. nov., a new species producing acetic acid from molecular hydrogen and carbon dioxide. Zentralblatt fürBakteriologie Mikrobiologie und Hygiene I Abteilung Originale C-Allgemeine Angewandte Und Ökologische Mikrobiologie 3:368–376Google Scholar
  4. Breznak J.A., Switzer J.M. and Seitz H.J. (1988). Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch. Microbiol. 150:282–288CrossRefGoogle Scholar
  5. Brioukhanov A.L., Thauer R.K. and Netrusov A.I. (2002). Catalase and Superoxide Dismutase in the Cells of Strictly Anaerobic Microorganisms. Microbiology 71:281–285CrossRefGoogle Scholar
  6. Brosius J., Dull T.J., Sleeter D.D. and Noller H.F. (1981). Gene organization and primary structure of a ribosomal-RNA operon from Escherichia coli. J. Mol. Biol. 148:107–127PubMedCrossRefGoogle Scholar
  7. Cashion P., Holder-Franklin M.A., McCully J. and Franklin M. (1977). A rapid method for the base ratio determination of bacterial DNA. Anal. Biochem. 81:461–466PubMedCrossRefGoogle Scholar
  8. Drake H.L. (ed.), 1994. Acetogenesis. In: Chapman and Hall Microbiology Series, Vol. 1. Chapman and Hall, New YorkGoogle Scholar
  9. Drake H.L. and Daniel S.L. (2004). Physiology of the thermophilic acetogen Moorella thermoacetica. Res. Microbiol. 155:422–436PubMedCrossRefGoogle Scholar
  10. Eck R.V. and Dayhoff M.O. (1980). Atlas of protein sequence and structure 1966. Silver Spring, MarylandGoogle Scholar
  11. Eichler B. and Schink B. (1984). Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe. Arch. Microbiol. 140:147–152CrossRefGoogle Scholar
  12. Engelmann T., Kaufmann F. and Diekert G. (2001). Isolation and characterization of a veratrol:corrinoid protein methyl transferase from Acetobacterium dehalogenans. Arch Microbiol 175:376–383PubMedCrossRefGoogle Scholar
  13. Escara J.F. and Hutton J.R. (1980). Thermal-stability and renaturation of DNA in dimethylsulfoxide solutions - acceleration of the renaturation rate. Biopolymers 19:1315–1327PubMedCrossRefGoogle Scholar
  14. Felsenstein J. (1985). Confidence-limits on phylogenies - an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  15. Fitch W.M. (1971). Toward defining course of evolution - minimum change for a specific tree topology. Syst. Zool. 20:406–416CrossRefGoogle Scholar
  16. Fontaine F.E., Peterson W.H., McCoy E. and Johnson M.J. (1942). A new type of glucose fermentation by Clostridium thermoaceticum n. sp. J. Bacteriol. 43:701–715PubMedGoogle Scholar
  17. Frazer A.C. and Young L.Y. (1986). Anaerobic C1-metabolism of the O-methyl-C14-labeled substituent of vanillate. Appl. Environ. Microbiol. 51:84–87PubMedGoogle Scholar
  18. Friedrich M.W. (2002). Phylogenetic analysis reveals multiple lateral transfers of adenosine-5′-phosphosulfate reductase genes among sulfate-reducing microorganisms. J. Bacteriol. 184:278–289PubMedCrossRefGoogle Scholar
  19. Frings J. and Schink B. (1994). Fermentation of phenoxyethanol to phenol and acetate by a homoacetogenic bacterium. Arch. Microbiol. 162:199–204PubMedGoogle Scholar
  20. Frings J., Wondrak C. and Schink B. (1994). Fermentative degradation of triethanolamine by a homoacetogenic bacterium. Arch. Microbiol. 162:103–107PubMedCrossRefGoogle Scholar
  21. Hall T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41:95–98Google Scholar
  22. Heijthuijsen J.H.F.G. and Hansen T.A. (1990). One-carbon metabolism in anaerobic non-methanogenic bacteria. In: Codd G.A., Dijkhuizen L., Tabita F.R. (eds) Autotrophic Microbiology and One-Carbon Metabolism. Kluwer, Dordrecht, pp. 163–191Google Scholar
  23. Henckel T., Friedrich M. and Conrad R. (1999). Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl. Environ. Microbiol. 65:1980–1990PubMedGoogle Scholar
  24. Huss V.A.R., Festl H. and Schleifer K.H. (1983). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst. Appl. Microbiol. 4:184–192Google Scholar
  25. Jahnke K.D. (1992). Basic computer-program for evaluation of spectroscopic DNA renaturation data from Gilford-System-2600 spectrophotometer on a Pc/Xt/at type personal computer. J. Microbiol. Meth. 15:61–73CrossRefGoogle Scholar
  26. Jukes T.H. and Cantor C.R. (1969). Evolution of protein molecules. In: Munro H.N. (eds) Mammalian Protein Metabolism. Academic Press, New York, pp. 21–132Google Scholar
  27. Kerby R., Niemczura W. and Zeikus J.G. (1983). Single-carbon catabolism in acetogens - analysis of carbon flow in Acetobacterium woodii and Butyribacterium methylotrophicum by fermentation and C13 nuclear magnetic resonance measurement. J.Bacteriol. 155:1208–1218PubMedGoogle Scholar
  28. Kimura M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111–120PubMedCrossRefGoogle Scholar
  29. Klemm P., Christiansen G., Kreft B., Marre R. and Bergmans H. (1994). Reciprocal exchange of minor components of type 1 and F1C fimbriae results in hybrid organelles with changed receptor specificities. J.Bacteriol. 176:2227–2234PubMedGoogle Scholar
  30. Kotsyurbenko O.R., Simankova M.V., Nozhevnikova A.N., Zhilina T.N., Bolotina N.P., Lysenko A.M. and Osipov G.A. (1995). New species of psychrophilic acetogens - Acetobacterium bakii sp. nov., A. paludosum sp. nov., A. fimetarium sp. nov. Arch. Microbiol. 163:29–34Google Scholar
  31. Krumholz L.R., Harris S.H., Tay S.T. and Suflita J.M. (1999). Characterization of two subsurface H2-utilizing bacteria, Desulfomicrobium hypogeium sp. nov. and Acetobacterium psammolithicum sp. nov., and their ecological roles. Appl. Environ. Microbiol. 65:2300–2306PubMedGoogle Scholar
  32. Kumar S., Tamura K., Jakobsen I.B. and Nei M. (2001). MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245PubMedCrossRefGoogle Scholar
  33. Lane D.J. (1991) 16S/23S rRNA sequencing. In: Stackebrandt E., Goodfellow M. (eds) Nucleic Acids Techniques in Bacterial Systematics. John Wiley, Chichester, pp. 115–175Google Scholar
  34. Leaphart A.B. and Lovell C.R. (2001) Recovery and Analysis of Formyltetrahydrofolate Synthetase Gene Sequences from Natural Populations of Acetogenic Bacteria. Appl.Environ.Microbiol. 67:1392–1395PubMedCrossRefGoogle Scholar
  35. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S., Jobb G., Forster W., Brettske I., Gerber S., Ginhart A.W., Gross O., Grumann S., Hermann S., Jost R., Konig A., Liss T., Lussmann R., May M., Nonhoff B., Reichel B., Strehlow R., Stamatakis A., Stuckmann N., Vilbig A., Lenke M., Ludwig T., Bode A., Schleifer K.H. (2004). ARB: a software environment for sequence data. Nucleic Acids Res. 32:1363–1371PubMedCrossRefGoogle Scholar
  36. Lueders T., Manefield M. and Friedrich M.W. (2004). Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ. Microbiol. 6:73–78PubMedCrossRefGoogle Scholar
  37. Madigan M.T., Martinko J.M. and Parker J. (2000). Microbial growth. In: Corey P.F. (eds) Brock Biology of Microorganisms. Prentice Hall, New Jersey, pp. 135–162Google Scholar
  38. Maidak B.L., Cole J.R., Lilburn T.G., Parker C.T., Saxman P.R., Farris R.J., Garrity G.M., Olsen G.J., Schmidt T.M. and Tiedje J.M. (2001). The RDP-II (Ribosomal Database Project). Nucleic Acids Research 29:173–174PubMedCrossRefGoogle Scholar
  39. Mechichi T., Labat M., Patel B.K.C., Woo T.H.S., Thomas P. and Garcia J.L. (1999a). Clostridium methoxybenzovorans sp. nov., a new aromatic O-demethylating homoacetogen from an olive mill wastewater treatment digester. Int. J. Syst. Bacteriol. 49:1201–1209Google Scholar
  40. Mesbah M., Premachandran U. and Whitman W.B. (1989). Precise measurement of the G+C content of deoxyribonucleic-acid by high-performance liquid-chromatography. Int. J. Syst. Bacteriol. 39:159–167Google Scholar
  41. Mountfort D.O., Grant W.D., Clarke R. and Asher R.A. (1988). Eubacterium callanderi sp. nov. that demethoxylates O-methoxylated aromatic acids to volatile fatty acids. Int. J. Syst. Bacteriol. 38:254–258Google Scholar
  42. Pfennig N. (1978). Rhodocyclus purpureus gen. nov. and sp. nov. a ring-shaped, vitamin B12-requiring member of family Rhodospirillaceae. Int. J. Syst. Bacteriol. 28:283–288Google Scholar
  43. Rossello-Mora R. and Amann R. (2001). The species concept for prokaryotes. FEMS Microbiol. Rev. 25:39–67PubMedCrossRefGoogle Scholar
  44. Saitou N. and Nei M. (1987). The neighbor-joining method - a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425PubMedGoogle Scholar
  45. Schuppert B. and Schink B. (1990). Fermentation of methoxyacetate to glycolate and acetate by newly isolated strains of Acetobacterium sp. Arch. Microbiol. 153:200–204CrossRefGoogle Scholar
  46. Seeley J.H.W., VanDemark P.J. and Lee J.J. (1991). Staining bacteria. In: Kennedy D., Park R.B. (eds) Microbes in Action, A Laboratory Manual of Microbiology. W. H. Freeman and Company, New York, pp. 71–90Google Scholar
  47. Simankova M.V., Kotsyurbenko O.R., Stackebrandt E., Kostrikina N.A., Lysenko A.M., Osipov G.A. and Nozhevnikova A.N. (2000). Acetobacterium tundrae sp. nov., a new psychrophilic acetogenic bacterium from tundra soil. Arch. Microbiol. 174:440–447PubMedCrossRefGoogle Scholar
  48. Smibert R.M. and Krieg N.R. (1994). Phenotypic characterization. In: Gerhardt P., Murray R.G.E., Wood W.A., Krieg N.R. (eds) Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, D. C., pp. 607–655Google Scholar
  49. Soerensen A.H., Winthernielsen M. and Ahring B.K. (1991). Kinetics of lactate, acetate and propionate in unadapted and lactate-adapted thermophilic, anaerobic sewage-sludge - the influence of sludge adaptation for start-up of thermophilic uasb-reactors. Appl. Microbiol. Biotechnol. 34:823–827Google Scholar
  50. Tamaoka J. and Komagata K. (1984). Determination of DNA-base composition by reversed-phase high-performance liquid-chromatography. FEMS Microbiol. Lett. 25:125–128CrossRefGoogle Scholar
  51. Tanaka K. and Pfennig N. (1988). Fermentation of 2-methoxyethanol by Acetobacterium malicum sp. nov. and Pelobacter venetianus. Arch. Microbiol. 149:181–187CrossRefGoogle Scholar
  52. Tindall B.J. (1990a). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst. Appl. Microbiol. 13:128–130Google Scholar
  53. Tindall B.J. (1990b). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol. Lett. 66:199–202CrossRefGoogle Scholar
  54. Traunecker J., Preuss A. and Diekert G. (1991). Isolation and characterization of a methyl chloride utilizing, strictly anaerobic bacterium. Arch. Microbiol. 156:416–421CrossRefGoogle Scholar
  55. Tschech A. and Pfennig N. (1984). Growth-yield increase linked to caffeate reduction in Acetobacterium woodii. Arch. Microbiol. 137:163–167CrossRefGoogle Scholar
  56. Visuvanathan S., Moss M.T., Stanford J.L., Hermontaylor J. and Mcfadden J.J. (1989). Simple enzymic method for isolation of DNA from diverse bacteria. J. Microbiol. Met. 10:59–64CrossRefGoogle Scholar
  57. Wayne L.G., Brenner D.J. and Colwell R.R., et al. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463–464Google Scholar
  58. Wheeler D.L., Church D.M., Lash A.E., Leipe D.D., Madden T.L., Pontius J.U., Schuler G.D., Schriml L.M., Tatusova T.A., Wagner L. and Rapp B.A. (2002). Database resources of the National Center for Biotechnology Information: 2002 update. Nucleic Acids Research 30:13–16PubMedCrossRefGoogle Scholar
  59. Widdel F., Kohring G.W. and Mayer F. (1983). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty-acids .3. characterization of the filamentous gliding Desulfonema limicola gen. nov., sp. nov., and Desulfonema magnum sp. nov. Arch. Microbiol. 134:286–294CrossRefGoogle Scholar
  60. Widdel F. and Bak F. (1992). Gram-negative mesophilic sulfate-reducing bacteria. In: Balows H., Trüper H.G., Dworkin M., Harder W., Schleifer K.H. (eds) The prokaryotes. 2 ed., Springer-Verlag, New YorkGoogle Scholar
  61. Willems A., Collins M.D. (1996) Phylogenetic relationships of the genera Acetobacterium and Eubacterium sensu stricto and reclassification of Eubacterium alactolyticum as Pseudoramibacter alactolyticus gen nov, comb nov. Int. J. System. Bacteriol 46:1088–1087CrossRefGoogle Scholar
  62. Zeikus J.G. (1983). Metabolism of one-carbon compounds by chemotropic anaerobes. Ad. Micro. Physiol. 24:215–299CrossRefGoogle Scholar
  63. Zeikus J.G., Lynd L.H., Thompson T.E., Krzycki J.A., Weimer P.J. and Hegge P.W. (1980). Isolation and characterization of a new, methylotrophic, acidogenic anaerobe, the Marburg Strain. Curr Microbiol 6:381–386CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Maiken Paarup
    • 1
  • Michael W. Friedrich
    • 2
  • Brian J. Tindall
    • 3
  • Kai Finster
    • 1
  1. 1.Department of Microbiology, Bldg. 540Institute of Biological Sciences, University of AarhusAarhus CDenmark
  2. 2.Max-Planck Institute for Terrestrial MicrobiologyMarbugDenmark
  3. 3.DSMZ GmbHBraunschweigGermany

Personalised recommendations