Antonie van Leeuwenhoek

, Volume 89, Issue 1, pp 27–37 | Cite as

A homozygous diploid subset of commercial wine yeast strains

  • John E. Bradbury
  • Keith D. Richards
  • Heather A. Niederer
  • Soon A. Lee
  • P. Rod Dunbar
  • Richard C. Gardner


Genetic analysis was performed on 45 commercial yeasts which are used in winemaking because of their superior fermentation properties. Genome sizes were estimated by propidium iodide fluorescence and flow cytometry. Forty strains had genome sizes consistent with their being diploid, while five had a range of aneuploid genome sizes that ranged from 1.2 to 1.8 times larger. The diploid strains are all Saccharomyces cerevisiae, based on genetic analysis of microsatellite and minisatellite markers and on DNA sequence analysis of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA of four strains. Four of the five aneuploid strains appeared to be interspecific hybrids between Saccharomyces kudriavzevii and Saccharomyces cerevisiae, with the fifth a hybrid between two S. cerevisiae strains. An identification fingerprint was constructed for the commercial yeast strains using 17 molecular markers. These included six published trinucleotide microsatellites, seven new dinucleotide microsatellites, and four published minisatellite markers. The markers provided unambiguous identification of the majority of strains; however, several had identical or similar patterns, and likely represent the same strain or mutants derived from it. The combined use of all 17 polymorphic loci allowed us to identify a set of eleven commercial wine yeast strains that appear to be genetically homozygous. These strains are presumed to have undergone inbreeding to maintain their homozygosity, a process referred to previously as ‘genome renewal’.


Flow cytometry Internal transcribed spacer Microsatellite Minisatellite Polymorphism Saccharomyces 



internal transcribed spacer


polymerase chain reaction


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are grateful to Vlad Jiranek from the University of Adelaide, Andy Frost, Steve Voysey and Peter Bristow from Allied Domecq (NZ) Ltd, Bruce Kirk from Scios Ltd and Jane McCarthy from AWRI for supplying yeast strains. We thank Jenny Bellon from AWRI for supplying genomic DNA of S. kudriavzevii and two anonymous reviewers for their constructive comments on the manuscript. This research was funded by research contract UOAX0404 from the New Zealand Foundation for Research Science and Technology; John Bradbury’s MSc research was supported by a Technology in Industry Fellowship from the same organisation.


  1. Antunovics Z., Nguyen H.-V., Gaillardin C. and Sipiczki M. 2005. Gradual genome stabilisation by progressive reduction of the Saccharomyces uvarum genome in an interspecific hybrid with Saccharomyces cerevisiae. FEMS Yeast Res. (in press) (epub ahead of print)Google Scholar
  2. Castrejon F., Martinez-Force E., Benitez T., Codon A.C. (2004). Genetic analysis of apomictic wine yeasts. Current Genetics 45: 187–196PubMedCrossRefGoogle Scholar
  3. Dunn B., Levine R.P., and Sherlock G., (2005). Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures. BMC Genomics 6: 53CrossRefGoogle Scholar
  4. Fernandez-Espinar M.T., Lopez V., Ramon D., Bartra E., and Querol A., (2001). Study of the authenticity of commercial wine yeast strains by molecular techniques. International Journal of Food Microbiology 70: 1–10PubMedCrossRefGoogle Scholar
  5. Field D., Eggert L., Metzgar D., Rose R., and Wills C., (1996). Use of polymorphic short and clustered coding-region microsatellites to distinguish strains of Candida albicans. FEMS Immunology and Medical Microbiology 15:73–79PubMedCrossRefGoogle Scholar
  6. Field D., Wills C., (1998). Abundant microsatellite polymorphism in Saccharomyces cerevisiae, and the different distributions of microsatellites in eight prokaryotes and S. cerevisiae, result from strong mutation pressures and a variety of selective forces. PNAS 95: 1647–1652PubMedCrossRefGoogle Scholar
  7. Giaever G., Chu A.M., Ni L., Connelly C., Riles L., Veronneau S., Dow S., Lucau-Danila A., Anderson K., Andre B., Arkin A.P., Astromoff A., El Bakkoury M., Bangham R., Benito R., Brachat S., Campanaro S., Curtiss M., Davis K., Deutschbauer A., Entian K.-D., Flaherty P., Foury F., Garfinkel D.J., Gerstein M., Gotte D., Guldener U., Hegemann J.H., Hempel S., Herman Z., Jaramillo D.F., Kelly D.E., Kelly S.L., Kotter P., LaBonte D., Lamb D.C., Lan N., Liang H., Liao H., Liu L., Luo C., Lussier M., Mao R., Menard P., Ooi S.L., Revuelta J.L., Roberts C.J., Rose M., Ross-Macdonald P., Scherens B., Schimmack G., Shafer B., Shoemaker D.D., Sookhai-Mahadeo S., Storms R.K., Strathern J.N., Valle G., Voet M., Volckaert G., Wang C.-y., Ward T.R., Wilhelmy J., Winzeler E.A., Yang Y., Yen G., Youngman E., Yu K., Bussey H., Boeke J.D., Snyder M., Philippsen P., Davis R.W., and Johnston M., (2002). Functional profiling of the Saccharomyces cerevisiae genome. Nature 418: 387–391PubMedCrossRefGoogle Scholar
  8. Gonzalez Techera A., Jubany S., Carrau F.M., and Gaggero C., (2001). Differentiation of industrial wine yeast strains using microsatellite markers. Lett Appl Microbiol 33: 71–75PubMedCrossRefGoogle Scholar
  9. Hennequin C., Thierry A., Richard G.F., Lecointre G., Nguyen H.V., Gaillardin C., and Dujon B., (2001). Microsatellite Typing as a New Tool for Identification of Saccharomyces cerevisiaeStrains. J. Clin Microbiol. 39: 551–559PubMedCrossRefGoogle Scholar
  10. Henschke P.A. (2004). Yeast strains available for winemaking.2004/2005. Australian Wine Research Institute Technical Review 153: 8–24Google Scholar
  11. Howell K.S., Bartowsky E.J., Fleet G.H., and Henschke P.A., (2004). Microsatellite PCR profiling of Saccharomyces cerevisiae strains during wine fermentation. Lett Appl Microbiol 38: 315–320PubMedCrossRefGoogle Scholar
  12. Ibeas J.I., Jimenez J., (1996). Genomic complexity and chromosomal rearrangements in wine-laboratory yeast hybrids. Current Genetics 30: 410–416PubMedCrossRefGoogle Scholar
  13. James T.Y., Moncalvo J.-M., Li S., Vilgalys R., (2001). Polymorphism at the Ribosomal DNA Spacers and Its Relation to Breeding Structure of the Widespread Mushroom Schizophyllum commune. Genetics 157: 149–161PubMedGoogle Scholar
  14. Johnston J.R., Baccari C., Mortimer R.K., (2000). Genotypic characterization of strains of commercial wine yeasts by tetrad analysis. Research in Microbiology 151: 583–590PubMedCrossRefGoogle Scholar
  15. Koch M.A., Dobes C., Mitchell-Olds T. (2003). Multiple Hybrid Formation in Natural Populations: Concerted Evolution of the Internal Transcribed Spacer of Nuclear Ribosomal DNA (ITS) in North AmericanArabis divaricarpa(Brassicaceae). Mol Biol Evol 20: 338–350PubMedCrossRefGoogle Scholar
  16. Kruglyak S., Durrett R., Schug M.D., Aquadro C.F., (2000). Distribution and Abundance of Microsatellites in the Yeast Genome Can Be Explained by a Balance Between Slippage Events and Point Mutations. Mol Biol Evol 17: 1210–1219PubMedGoogle Scholar
  17. Legras J.-L., Ruh O., Merdinoglu D. and K.F. 2005. Selection of hypervariable microsatellite loci for the characterization of Sacchaormyces cerevisiae strains. Int. J. Food Microbiol. 102: 73–83Google Scholar
  18. Liti G., Peruffo A., James S.A., Roberts I.N., Louis E.J., (2005). Inferences of evolutionary relationships from a population survey of LTR-retrotransposons and telomeric-associated sequences in the Saccharomyces sensu stricto complex. Yeast 22: 177–192PubMedCrossRefGoogle Scholar
  19. Liti G., Peruffo A., James S.A., Roberts I.N., Louis E.J., (2005). Inferences of evolutionary relationships from a population survey of LTR-retrotransposons and telomeric-associated sequences in the Saccharomyces sensu stricto complex. Yeast 22: 177–192PubMedCrossRefGoogle Scholar
  20. Maraz A. (2002). From yeast genetics to biotechnology. Acta Microbiol Immunol Hung. 49: 483–491PubMedCrossRefGoogle Scholar
  21. Marinangeli P., Angelozzi D., Ciani M., Clementi F., Mannazzu I., (2004). Minisatellites in Saccharomyces cerevisiae genes encoding cell wall proteins: a new way towards wine strain characterisation. FEMS Yeast Research 4: 427–435PubMedCrossRefGoogle Scholar
  22. McCullough M.J., Clemons K.V., McCusker J.H., Stevens D.A., (1998). Species Identification and Virulence Attributes of Saccharomyces boulardii (nom. inval.). J. Clin. Microbiol. 36: 2613–2617PubMedGoogle Scholar
  23. Montrocher R., Verner M.C., Briolay J., Gautier C., Marmeisse R., (1998). Phylogenetic analysis of the Saccharomyces cerevisiaegroup based on polymorphisms of rDNA spacer sequences. International Journal of Systematic Bacteriology 48: 295–303PubMedCrossRefGoogle Scholar
  24. Mortimer R.K. (2000). Evolution and Variation of the Yeast (Saccharomyces) Genome. Genome Res. 10: 403–409PubMedCrossRefGoogle Scholar
  25. Mortimer R.K., Romano P., Suzzi G., Polsinelli M., (1994). Genome renewal: a new phenomenon revealed from a genetic study of 43 strains of Saccharomyces cerevisiae derived from natural fermentation of grape mus. Yeast 10: 1543–1552PubMedCrossRefGoogle Scholar
  26. Paulovich A.G. and Hartwell L.H. 1995. A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell 82: 841–847Google Scholar
  27. Perez M.A., Gallego F.J., Martinez I., Hidalgo P., (2001). Detection, distribution and selection of microsatellites (SSRs) in the genome of the yeast Saccharomyces cerevisiae as molecular markers. Lett Appl Microbiol 33: 461–466PubMedCrossRefGoogle Scholar
  28. Pretorius I.S. (2000). Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16: 675–729PubMedCrossRefGoogle Scholar
  29. Ramirez M., Vinagre A., Ambrona J., Molina F., Maqueda M., Rebollo J.E., (2004). Genetic Instability of Heterozygous, Hybrid, Natural Wine Yeasts. Appl. Environ. Microbiol. 70: 4686–4691PubMedCrossRefGoogle Scholar
  30. Schuller D., Valero E., Dequin S., Casal M., (2004). Survey of molecular methods for the typing of wine yeast strains. FEMS Microbiology Letters 231: 19–26PubMedCrossRefGoogle Scholar
  31. Teyssier C., Marchandin H., Simeon De Buochberg M., Ramuz M., Jumas-Bilak E. (2003). Atypical 16S rRNA Gene Copies in Ochrobactrum intermedium Strains Reveal a Large Genomic Rearrangement by Recombination between rrn Copies. J. Bacteriol. 185: 2901–2909PubMedCrossRefGoogle Scholar
  32. Walker M.E., Gardner J.M., Vystavelova A., McBryde C., de Barros Lopes M., Jiranek V., (2003). Application of the reuseable, KanMX selectable marker to industrial yeast: construction and evaluation of heterothallic wine strains of Saccharomyces cerevisiae, possessing minimal foreign DNA sequences. FEMS Yeast Research 4: 339–347PubMedCrossRefGoogle Scholar
  33. White T.J., Brums T., Lee S., Taylor J., (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. San Diego, Academic PressGoogle Scholar
  34. Winston F., Dollard C. and Ricupero-Hovasse S.L. 1995. Construcion of a set convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11: 53–55Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • John E. Bradbury
    • 1
  • Keith D. Richards
    • 1
  • Heather A. Niederer
    • 1
  • Soon A. Lee
    • 1
  • P. Rod Dunbar
    • 1
  • Richard C. Gardner
    • 1
  1. 1.School of Biological SciencesUniversity of AucklandAucklandNew Zealand

Personalised recommendations