Antonie van Leeuwenhoek

, Volume 88, Issue 1, pp 35–48

Inactivation of Escherichia coli and coliform bacteria in traditional brass and earthernware water storage vessels



The detection and enumeration of indicator bacteria such as Escherichia coli is used to assess the extent of faecal contamination of drinking water. On the basis of this approach, the effectiveness of storing water contaminated with faecal indicator bacteria in brass or earthern vessels (mutkas) of the type used in rural India have been investigated. Suspensions of bacteria in sterile distilled water were maintained for up to 48 h in each vessel and enumerated by surface plate counts on nutrient agar (non-selective) and several selective coliform media at 37 °C either under standard aerobic conditions, or under conditions designed to neutralise reactive oxygen species (ROS), e.g. using an anaerobic cabinet to prepare plates of pre-reduced growth medium or by inclusion of sodium pyruvate in the growth medium, with incubation of aerobically-prepared plates in an anaerobic jar. The counts obtained for E. coli decreased on short-term storage in a brass mutka; counts for selective media were lower than for equivalent counts for non-selective medium, with ROS-neutralised conditions giving consistently higher counts than aerobic incubation. However, after 48 h, no bacteria were cultivable under any conditions. Similar results were obtained using water from environmental sources in the Panjab, and from rural households where brass and earthern mutkas are used for storage of drinking water, with enumeration on selective coliform media (presumptive total coliforms). In all cases results indicated that, while storage of water in a brass mutka can inactivate E. coli and coliforms over a 48 h period, standard aerobic plate counting using selective media may not be fully effective in enumerating sub-lethally damaged bacteria.


Heavy metals Reactive oxygen species (ROS) Selective media Sub-lethal stress 



membrane faecal coliform agar without rosolic acid


membrane lauryl sulphate agar


reactive oxygen species


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldsworth, T.G., Sharman, R.L., Dodd, C.E.R. 1999Bacterial suicide through stressCell. Mol. Life. Sci.56378383CrossRefPubMedGoogle Scholar
  2. Anon2000Anaerocult® A product information sheetMerck VWR DiagnosticsDarmstadtGoogle Scholar
  3. Anon2002The Microbiology of Drinking Water (2002) – Part 1 – Water Quality and Public Health. Methods for the Examination of Waters and Associated MaterialsEnvironment AgencyLondonAvailable at Scholar
  4. Bissonnette, G.K., Jezeski, J.J., McFeters, G.A., Stuart, D.G. 1974Influence of environmental stress on enumeration of indicator bacteria from natural watersAppl. Microbiol.29186194Google Scholar
  5. Bogosian, G., Aardema, N.D., Borneuf, E.V., Morris, P.J.L., O’Neil, J.P. 2000Recovery of hydrogen peroxide-sensitive culturable cells of Vibrio vulnificus gives the appearance of resuscitation from a viable but nonculturable stateJ. Bacteriol.18250705075CrossRefPubMedGoogle Scholar
  6. Calabrese, J.P., Bissonnette, G.K. 1990aImproved membrane filtration method incorporating catalase and sodium pyruvate for detection of chlorine stressed coliform bacteriaAppl. Environ. Microbiol.5635583564Google Scholar
  7. Calabrese, J.P., Bissonnette, G.K. 1990bImproved detection of acid mine water stressed coliform bacteria on media containing catalase and pyruvateCan. J. Microbiol.36544550Google Scholar
  8. Clesceri, L.S., Eaton, A.D., Greenberg, A.E. 1998Standard Methods for the Examination of Water and Wastewater20th edAmerican Public Health OrganisationWashingtonGoogle Scholar
  9. Crump, J.A., Okoth, G.O., Slutsker, L., Ogaja, D.O., Keswick, B.H., Luby, S.P. 2004Effect of point-of-use disinfection, flocculation and combined flocculation-disinfection on drinking water quality in western KenyaJ. Appl. Microbiol.97225231CrossRefPubMedGoogle Scholar
  10. Czechowitz, S.M., Santos, O., Zottola, E.A. 1996Recovery of thermally stressed Escherichia coli O157:H7 by media supplemented with pyruvateInt. J. Food Microbiol.33275284CrossRefPubMedGoogle Scholar
  11. Domek, M.J., Lechevallier, M.W., Cameron, S.C., McFeters, G.A. 1984Evidence for the role of copper in the injury process of coliform bacteria in drinking waterAppl. Environ. Microbiol.48289293PubMedGoogle Scholar
  12. Domek, M.J., Robbins, J.E., Anderson, M.E., McFeters, G.A. 1987Metabolism of Escherichia coli injured by CopperCan. J. Microbiol.335762PubMedGoogle Scholar
  13. George, S.M., Richardson, L.C.C., Pol, I.E., Peck, M.W. 1998Effects of oxygen concentration and redox potential on recovery of sublethally heat-damaged cells of Escherichia coli O157:H7, Salmonella enteritidis and Listeria monocytogenesJ. Appl. Microbiol.84903909CrossRefPubMedGoogle Scholar
  14. Grey, B., Steck, R.T. 2001Concentrations of copper thought to be toxic to Escherichia coli can induce the viable but nonculturable conditionAppl. Environ. Microbiol.6753255327CrossRefPubMedGoogle Scholar
  15. Hassen, A., Jedidi, N., Chérif, M., M’hiri, A., Boudabous, A., Van Cleemput, O. 1998Mineralization of nitrogen in a clayey loamy soil amended with organic waste residues enriched with Zn, Cu and CdBioresour. Technol.643945CrossRefGoogle Scholar
  16. Jonas, R.B. 1989Acute copper and cupric ions toxicity in an estuarine microbial communityAppl. Environ. Microbiol.554349Google Scholar
  17. Kang, D.H., Siragusa, G.R. 1999Agar underlay method for recovery of sub lethally heat injured bacteriaAppl. Environ. Microbiol.6553345337PubMedGoogle Scholar
  18. Keevil C.W. 2000. Copper Pipes Kill the Burger Bug in Drinking Water. In: 100th General Meeting of the American Society for Microbiology, Los Angeles, Q79.Google Scholar
  19. Keevil, C.W., Walker, J.T., Maule, A., James, B.W. 1999

    Persistence and physiology of Escherichia coli O157:H7 in the environment

    Duffy, G.Garvey, P.Coia, J.Wasteson, W.McDowell, D. eds. Verocytotoxigenic E. coli in Europe: Survival and GrowthTeagascDublin4252
    Google Scholar
  20. Khaengraeng R. and Reed R.H. in press. Oxygen and photoinactivation of Escherichia coli in UVA and sunlight: implications for solar water treatment. J. Appl. Microbiol.Google Scholar
  21. Khairy, A.E.M., Sebaie, O.E., Gawad, A.A., Attar, E.L. 1982The sanitary condition of rural drinking water in a Nile Delta villageI: parasitological assessment of ‘Zir’ stored and direct tap waterJ. Hyg. Camb.885761PubMedGoogle Scholar
  22. Kielemoes, J., Verstraete, W. 2001Influence of copper-alloying of austenitic stainless steel on multi-species biofilm developmentLett. Appl. Microbiol.33148152CrossRefPubMedGoogle Scholar
  23. Kosek, M., Bern, C., Guerrant, R.L. 2003The global burden of diarrhoeal diseaseas estimated from studies published between 1992 and 2000Bull. World Health Organ.81197204PubMedGoogle Scholar
  24. McBrian, D.C. 1980Anaerobic potentiation of copper toxicity and some environmental considerationsCIBA Found. Symp.79310318Google Scholar
  25. McFeters, G.A., Kippin, J.S., LeChevallier, M.W. 1986Injured coliform in drinking waterAppl. Environ. Microbiol.5115PubMedGoogle Scholar
  26. Mintz, E.D., Bartram, J., Lochery, P., Wegelin, M. 2001Not just a drop in the bucket: expanding access to point-of-use water treatment systemAm. J. Pub. Health.9115651570PubMedGoogle Scholar
  27. Mizunoe, Y., Wai, S.N., Takade, A., Yoshida, S. 1999Restoration of culturability of starvation-stressed and low-temperature stressed Escherichia coli O157:H7 cells by using H2O2 degrading compoundsArch. Microbiol.1726367CrossRefPubMedGoogle Scholar
  28. Nageli, C.U. 1893Oligodynamische Ercheinungen in labenden ZellenDeuksch. Schweiz. Naturgesell.33143Google Scholar
  29. Patwardhan, A.R. 1990Our Water Our LifeCouncil for Advancement of People’s Action and Rural TechnologyDelhiGoogle Scholar
  30. Pedazhur, R., Shuval, H.I., Ulitzur, S. 1997Silver and hydrogen peroxide as potential drinking water disinfectants: their bactericidal effects and possible modes of actionWater Sci. Technol.358793CrossRefGoogle Scholar
  31. Reed, R.H. 2004The inactivation of microbes by sunlight: solar disinfection as a water treatment processAdv. Appl. Microbiol.54333365CrossRefPubMedGoogle Scholar
  32. Sartory, D.P. 1995Improved recovery of chlorine-stressed coliforms with pyruvate supplemented mediaWater Sci. Technol.31255258CrossRefGoogle Scholar
  33. Sartory, D.P., Howard, L. 1992A medium detecting β-glucuronidase for the simultaneous membrane filtration enumeration of Escherichia coli and coliforms from drinking waterLett. Appl. Microbiol.15273276Google Scholar
  34. Stephens, P.J., Druggan, P., Caron, N.V. 2000Stressed Salmonella are exposed to reactive oxygen species from two independent sources during recovery in conventional culture mediaInt. J. Food Microbiol.60269285CrossRefPubMedGoogle Scholar
  35. Sunda W.G. and Huntsman S.A. 1998. Processes regulating cellular metal accumulation and physiological effects: phytoplankton as model systems. Sci. Total Environ. 219: 165–181.Google Scholar
  36. WHO2002aManaging Water in the Home: Accelerated Health Gains from Improved Water SupplySanitation and Health Department of Protection of Human Environment. World Health OrganisationGenevaGoogle Scholar
  37. WHO2002bEvaluation of the H2S Method for Detection of Faecal Contamination of Drinking WaterSanitation and Health Department of Protection of Human EnvironmentWorld Health OrganisationGenevaGoogle Scholar
  38. WHO2004Guidelines for Drinking-water Quality Volume 1: Recommendations, 3rd edWorld Health OrganisationGenevaGoogle Scholar
  39. Wright, J., Gundry, S., Ronam, C. 2004Household drinking water in developing countries: a systematic review of microbiological contamination between source and point of useTrop. Med. Int. Health.9106117CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Division of Biomedical SciencesNorthumbria UniversityNewcastle upon Tyne, Tyne and WearUK
  2. 2.Department of MicrobiologyPanjab UniversityChandigarhIndia

Personalised recommendations