Advertisement

Antonie van Leeuwenhoek

, Volume 86, Issue 4, pp 339–347 | Cite as

Ordination and significance testing of microbial community composition derived from terminal restriction fragment length polymorphisms: application of multivariate statistics

  • Gavin N. Rees
  • Darren S. Baldwin
  • Garth O. Watson
  • Shane Perryman
  • Daryl L. Nielsen
Article

Abstract

Terminal restriction fragment length polymorphism (T-RFLP) is increasingly being used to examine microbial community structure and accordingly, a range of approaches have been used to analyze data sets. A number of published reports have included data and results that were statistically flawed or lacked rigorous statistical testing. A range of simple, yet powerful techniques are available to examine community data, however their use is seldom, if ever, discussed in microbial literature. We describe an approach that overcomes some of the problems associated with analyzing community datasets and offer an approach that makes data interpretation simple and effective. The Bray-Curtis coefficient is suggested as an ideal coefficient to be used for the construction of similarity matrices. Its strengths include its ability to deal with data sets containing multiple blocks of zeros in a meaningful manner. Non-metric multi-dimensional scaling is described as a powerful, yet easily interpreted method to examine community patterns based on T-RFLP data. Importantly, we describe the use of significance testing of data sets to allow quantitative assessment of similarity, removing subjectivity in comparing complex data sets. Finally, we introduce a quantitative measure of sample dispersion and suggest its usefulness in describing site heterogeneity.

Microbial community analysis Multivariate statistics T-RFLP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avaniss-Aghajani E., Jones K. and Chapman B.C. 1994. Amolecular technique for identification of bacteria using smallsubunit ribosomal RNA sequences. BioTechniques 17: 143–149.Google Scholar
  2. Bray J.R. and Curtis J.T. 1957. An ordination of the upland forestcommunities of southern Wisconsin. Ecol. Monographs 27: 325–349.CrossRefGoogle Scholar
  3. Clarke K.R. 1993. Non-parametric multivariate analysis of changesin community structure. Aust. J. Ecol. 18: 117–143.Google Scholar
  4. Clarke K.R. and Warwick R.M. 2001. Change in marine commu-nities:an approach to statistical analysis and interpretation, 2nd edition. PRIMER-E, Plymouth, UK.Google Scholar
  5. Clement B.G., Kehl L.E., DeBord K.L. and Kitts C.L. 1998. Ter-minalrestriction fragment patterns (TRFPs), a rapid, PCR-basedmethod for the comparison of complex bacterial communities. J. Microbiol. Meth. 31: 135–142.CrossRefGoogle Scholar
  6. Díez B., Pedrós-Alió C., Marsh T.L. and Massana R. 2001. Appli-cationof denaturing gradient gel electrophoresis (DGGE( tostudy the diversity of marine picoeukaryotic assemblages andcomparison of DGGE with other molecular techniques. Appl. Environ. Microbiol. 67: 2942–2951.PubMedCrossRefGoogle Scholar
  7. Dollhopf S.L., Hashsham S.A. and Tiedje J.M. 2001. Interpreting16S rDNA T-RFLP data: applications of self-organizing mapsand principal component analysis to describe communitydynamics and convergence. Microb. Ecol. 42: 495–505.PubMedCrossRefGoogle Scholar
  8. Eichner C., Erb R.W., Timmis K.T. and Wagner-Döbler I. 1999. Thermal gradient gel electrophoresis analysis of bioprotectionfrom pollutant shocks in the activated sludge microbial commu-nity. Appl. Environ. Microbiol. 65: 102–109.PubMedGoogle Scholar
  9. Faith D.P., Humphrey C.L. and Dostine P.L. 1991. Statistical powerand BACI designs in biological monitoring: comparative evalu-ationof measures of community dissimilarity based on benthicmacroinvertebrate communities in Rockhole Mine Creek,Northern Territory, Australia. Aust. J. Mar. Freshwat. Res. 42: 589–602.CrossRefGoogle Scholar
  10. Fierer N., Schimel J.P. and Holden P.A. 2003. Influence of dryingand rewetting frequency on soil bacterial community structure. Microb. Ecol. 45: 63–71.PubMedCrossRefGoogle Scholar
  11. Flynn S.J., Löffler F.E. and Tiedje J.M. 2000. Microbial commu-nitychanges associated with a shift from reductive dechlorina-tionof PCE to reductive dechlorination of cis-DCE and VC. Environ. Sci. Technol. 34: 1056–1061.CrossRefGoogle Scholar
  12. Gong J., Forster R.J., Yu H., Chambers J.R., Sabour P.M., Wheat-croftR. and Chen S. 2002. Diversity and phylogenetic analysisof bacteria in the mucosa of chicken ceca and comparison withbacteria in the cecal lumen. FEMS Microbiol. Lett. 208: 1–7.PubMedCrossRefGoogle Scholar
  13. Hiraishi A., Iwasaki M. and Shinjo H. 2000. Terminal restrictionpattern analysis of 16S rRNA genes for the characterization ofbacterial communities of activated sludge. J. Biosci. Bioeng. 90: 148–156.PubMedGoogle Scholar
  14. Kruskal J.B. 1964. Multidimensional scaling by optimizing good-nessof fit to a nonmetric hypothesis. Psychometrika 298: 1–27.CrossRefGoogle Scholar
  15. Lambshead P.J.D. 1986. Sub-catastrophic sewage and industrialwaste contamination as revealed by marine nematode faunalanalysis. Mar. Prog. Ser 29: 247–260.Google Scholar
  16. Legendre P. and Gallagher E.D. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.CrossRefGoogle Scholar
  17. Legendre P. and Legendre L. 1988. Numerical Ecology. Elsevier,Amsterdam, The Netherlands.Google Scholar
  18. Liu W-T., Marsh T.L., Cheng H. and Forney L.J. 1997. Charac-terizationof microbial diversity by determining terminal restric-tionfragment length polymorphisms of genes encoding 16SrRNA. Appl. Environ. Microbiol. 63: 4516–4522.PubMedGoogle Scholar
  19. Lucklow T., Dunfield P.F. and Liesack W. 2000. Use of T-RFLPtechniques to assess spatial and temporal changes in the bacte-rialcommunity structure within an agricultural soil planted withtransgenic and non-transgenic potato plants. FEMS Microbiol. Ecol. 32: 241–247.CrossRefGoogle Scholar
  20. Lüdemann H., Arth I. and Liesack W. 2000. Spatial changes in thebacterial community structure along a vertical gradient inflooded paddy soil cores. Appl. Environ. Microbiol. 66: 754–762.PubMedCrossRefGoogle Scholar
  21. Nielsen D.L. and Chick A.J. 1997. Flood mediated changes inaquatic macrophyte community structure. Mar. Freshwat. Res. 48: 153–157.CrossRefGoogle Scholar
  22. Quinn G.P. and Keogh M.J. 2002. Experimental design and dataanalysis for biologists. Cambridge University Press, Cambridge,UK.Google Scholar
  23. Sait L., Galic M., Strugnell R.A. and Janssen P.H. 2003. Secretoryantibodies do not affect the composition of the bacterial micro-biotain the terminal ileum of 10-week-old mice. Appl. Environ. Microbiol. 69: 2100–2109.PubMedCrossRefGoogle Scholar
  24. Sessitsch A., Gyamfi S., Stralis-Pavese N., Weilharter A. and Pfei-ferU. 2002. RNA isolation from soil for bacterial communityand functional analysis: evaluation of different extract and soilconservation protocols. J. Microbiol. Meth. 51: 171–179.CrossRefGoogle Scholar
  25. Shiel R.J., Green J.D. and Nielsen D.L. 1998. Floodplain biodiver-sity:Why are there so many species? Hydrobiologia. 387: 39–46.CrossRefGoogle Scholar
  26. Urakawa H., Yoshida T., Nishimura M. and Ohwada K. 2000. Characterization of depth-related population variation in micro-bialcommunities of a coastal marine sediment using 16SrDNA-based approaches and quinone profiling. Environ. Microbiol. 2: 542–554.PubMedCrossRefGoogle Scholar
  27. van Hannen E.J., Zwart G., van Agterveld M.P., Ebert J. and Laan-broekH.J.L. 1999. Changes in bacterial and eukaryotic commu-nitystructure after mass lysis of filamentous cyanobacteriaassociated with viruses. Appl. Environ. Microbiol. 65: 795–801.PubMedGoogle Scholar
  28. Warwick R.M. and Clarke K.R. 1993. Increased variability as asymptom of stress in marine communities. J. Exp. Mar. Biol. Ecol. 172: 215–226.CrossRefGoogle Scholar
  29. Weisburg W.G., Barns S.M., Pelletier D.A. and Lane D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 797-703.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Gavin N. Rees
    • 1
  • Darren S. Baldwin
    • 1
  • Garth O. Watson
    • 1
  • Shane Perryman
    • 1
  • Daryl L. Nielsen
    • 1
  1. 1.Murray Darling Freshwater Research Centre and Cooperative Research Centre for Freshwater EcologyAlburyAustralia

Personalised recommendations