Skip to main content
Log in

Proportionality, equality, and duality in bankruptcy problems with nontransferable utility

  • S.I.: SING 14
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper studies bankruptcy problems with nontransferable utility as a generalization of bankruptcy problems with monetary estate and claims. Following the theory on TU-bankruptcy, we introduce a duality notion for NTU-bankruptcy rules and derive several axiomatic characterizations of the proportional rule and the constrained relative equal awards rule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In other words, the strong Pareto set coincides with the weak Pareto set. This condition is also called strict comprehensiveness (see e.g. Roemer 1998).

  2. Note that \((\lambda ^{E,c-f(E,c)}E,c)\in \mathrm{BR}^N\) since \(\lambda ^{E,c-f(E,c)}\in (0,\lambda ^{E,c})\).

References

  • Aumann, R., & Maschler, M. (1985). Game theoretic analysis of a bankruptcy problem from the Talmud. Journal of Economic Theory, 36(2), 195–213.

    Article  Google Scholar 

  • Borm, P., Carpente, L., Casas-Méndez, B., & Hendrickx, R. (2005). The constrained equal awards rule for bankruptcy problems with a priori unions. Annals of Operations Research, 137(1), 211–227.

    Article  Google Scholar 

  • Carpente, L., Casas-Méndez, B., Gozálvez, J., Llorca, N., Pulido, M., & Sánchez-Soriano, J. (2013). How to divide a cake when people have different metabolism? Mathematical Methods of Operations Research, 78(3), 361–371.

    Article  Google Scholar 

  • Chun, Y. (1988). The proportional solution for rights problems. Mathematical Social Sciences, 15(3), 231–246.

    Article  Google Scholar 

  • Chun, Y., & Thomson, W. (1992). Bargaining problems with claims. Mathematical Social Sciences, 24(1), 19–33.

    Article  Google Scholar 

  • Dagan, N. (1996). New characterizations of old bankruptcy rules. Social Choice and Welfare, 13(1), 51–59.

    Article  Google Scholar 

  • Dietzenbacher, B. (2018). Bankruptcy games with nontransferable utility. Mathematical Social Sciences, 92, 16–21.

    Article  Google Scholar 

  • Dietzenbacher, B., Borm, P., & Estévez-Fernández, A. (2020). NTU-bankruptcy problems: Consistency and the relative adjustment principle. Review of Economic Design, 24(1), 101–122.

    Article  Google Scholar 

  • Estévez-Fernández, A., Borm, P., & Fiestras-Janeiro, M. (2020). Nontransferable utility bankruptcy games. TOP, 28(1), 154–177.

    Article  Google Scholar 

  • Herrero, C., & Villar, A. (2001). The three musketeers: four classical solutions to bankruptcy problems. Mathematical Social Sciences, 42(3), 307–328.

    Article  Google Scholar 

  • Herrero, C., & Villar, A. (2002). Sustainability in bankruptcy problems. TOP, 10(2), 261–273.

    Article  Google Scholar 

  • Mariotti, M., & Villar, A. (2005). The Nash rationing problem. International Journal of Game Theory, 33(3), 367–377.

    Article  Google Scholar 

  • Moulin, H., & Shenker, S. (1992). Serial cost sharing. Econometrica, 60(5), 1009–1037.

    Article  Google Scholar 

  • O’Neill, B. (1982). A problem of rights arbitration from the Talmud. Mathematical Social Sciences, 2(4), 345–371.

    Article  Google Scholar 

  • Orshan, G., Valenciano, F., & Zarzuelo, J. (2003). The bilateral consistent prekernel, the core, and NTU bankruptcy problems. Mathematics of Operations Research, 28(2), 268–282.

    Article  Google Scholar 

  • Pulido, M., Borm, P., Hendrickx, R., Llorca, N., & Sánchez-Soriano, J. (2008). Compromise solutions for bankruptcy situations with references. Annals of Operations Research, 158(1), 133–141.

    Article  Google Scholar 

  • Pulido, M., Sánchez-Soriano, J., & Llorca, N. (2002). Game theory techniques for university management: an extended bankruptcy model. Annals of Operations Research, 109, 129–142.

    Article  Google Scholar 

  • Roemer, J. (1998). Theories of distributive justice. Cambridge: Harvard University Press.

    Google Scholar 

  • Thomson, W. (2003). Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: A survey. Mathematical Social Sciences, 45(3), 249–297.

    Article  Google Scholar 

  • Thomson, W. (2013). Game-theoretic analysis of bankruptcy and taxation problems: recent advances. International Game Theory Review, 15(3), 1340018.

    Article  Google Scholar 

  • Thomson, W. (2015). Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: An update. Mathematical Social Sciences, 74, 41–59.

    Article  Google Scholar 

  • Yeh, C. (2004). Sustainability, exemption, and the constrained equal awards rule: A note. Mathematical Social Sciences, 47(1), 103–110.

    Article  Google Scholar 

  • Yeh, C. (2006). Protective properties and the constrained equal awards rule for claims problems: A note. Social Choice and Welfare, 27(2), 221–230.

    Article  Google Scholar 

  • Young, H. (1988). Distributive justice in taxation. Journal of Economic Theory, 44(2), 321–335.

    Article  Google Scholar 

Download references

Acknowledgements

Support from the Basic Research Program of the National Research University Higher School of Economics is gratefully acknowledged. Two anonymous referees are gratefully acknowledged for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Dietzenbacher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 2

  1. (i)

    Let \((E,c)\in \mathrm{BR}^N\) and let \(t\in (0,1)\). Then

    $$\begin{aligned} \mathrm{Prop}(tE,c)=\frac{1}{\lambda ^{tE,c}}c=t\frac{1}{\lambda ^{E,c}}c=t\mathrm{Prop}(E,c). \end{aligned}$$

    Hence, the proportional rule satisfies path linearity. Let f be a bankruptcy rule satisfying path linearity. Let \((E,c)\in \mathrm{BR}^N\). Then

    $$\begin{aligned} f(E,c)=f\left( \frac{1}{\lambda ^{E,c}}\lambda ^{E,c}E,c\right) =\frac{1}{\lambda ^{E,c}}f(\lambda ^{E,c}E,c)=\frac{1}{\lambda ^{E,c}}c=\mathrm{Prop}(E,c). \end{aligned}$$

    Hence, \(f=\mathrm{Prop}\).

  2. (ii)

    By Theorem 1(i), the proportional rule satisfies self-duality. By Theorem 2(i), the proportional rule satisfies path composition down. Let f be a bankruptcy rule satisfying path composition down and self-duality. Let \((E,c)\in \mathrm{BR}^N\). By path continuity, there is a \(t\in (0,\lambda ^{E,c})\) such that \(\sum _{i\in N}f_i(tE,c)=\frac{1}{2}\sum _{i\in N}c_i\). By self-duality, \(c-f(tE,c)=f(\lambda ^{E,c-f(tE,c)}E,c)\). This means that

    $$\begin{aligned} \sum _{i\in N}f_i\Big (\lambda ^{E,c-f(tE,c)}E,c\Big )=\sum _{i\in N}c_i-\sum _{i\in N}f_i(tE,c)=\frac{1}{2}\sum _{i\in N}c_i. \end{aligned}$$

    By path monotonicity, \(t=\lambda ^{E,c-f(tE,c)}\) and \(f(tE,c)=f(\lambda ^{E,c-f(tE,c)}E,c)\). This means that \(t=\frac{1}{2}\lambda ^{E,c}\) and \(f(tE,c)=\frac{1}{2}c\). Similarly, \(f(\frac{1}{2}\lambda ^{E,\frac{1}{2}c}E,\frac{1}{2}c)=\frac{1}{4}c\). By path composition down,

    $$\begin{aligned} f\Big (\tfrac{1}{4}\lambda ^{E,c}E,c\Big )= & {} f\Big (\tfrac{1}{4}\lambda ^{E,c}E,f\Big (\tfrac{1}{2}\lambda ^{E,c}E,c\Big )\Big )=f\Big (\tfrac{1}{4}\lambda ^{E,c}E,\tfrac{1}{2}c\Big )\\= & {} f\Big (\tfrac{1}{2}\lambda ^{E,\tfrac{1}{2}c}E,\tfrac{1}{2}c\Big )=\tfrac{1}{4}c. \end{aligned}$$

    By self-duality,

    $$\begin{aligned} f\Big (\tfrac{3}{4}\lambda ^{E,c}E,c\Big )= & {} f\Big (\lambda ^{E,\tfrac{3}{4}c}E,c\Big )=f\left( \lambda ^{E,c-f\Big (\tfrac{1}{4}\lambda ^{E,c}E,c\Big )}E,c\right) \\= & {} c-f\Big (\tfrac{1}{4}\lambda ^{E,c}E,c\Big )=\tfrac{3}{4}c. \end{aligned}$$

    Continuing this reasoning, \(f(\frac{m}{2^n}\lambda ^{E,c}E,c)=\frac{m}{2^n}c\) for all \(m,n\in \mathbb {N}\) with \(m\le 2^n\). By path continuity, \(f(t\lambda ^{E,c}E,c)=tc\) for all \(t\in (0,1)\). Hence, \(f(E,c)=\mathrm{Prop}(E,c)\).

  3. (iii)

    By Theorem 1(i), the proportional rule satisfies self-duality. By Theorem 2(i), the proportional rule satisfies path composition up. Let f be a bankruptcy rule satisfying path composition up and self-duality. By Lemma 2(ii), f satisfies path composition down and self-duality. By Theorem 2(ii), \(f=\mathrm{Prop}\).

Proof of Theorem 3

  1. (i)

    Let \((E,c)\in \mathrm{BR}^N\) and let \(i,j\in N\) such that \(\frac{c_i}{u_i^E}=\frac{c_j}{u_j^E}\). Then

    $$\begin{aligned} \frac{\mathrm{CREA}_i(E,c)}{u_i^E}= & {} \frac{\min \{c_i,\alpha ^{E,c}u_i^E\}}{u_i^E} = \min \left\{ \frac{c_i}{u_i^E},\alpha ^{E,c}\right\} \\= & {} \min \left\{ \frac{c_j}{u_j^E},\alpha ^{E,c}\right\} = \frac{\min \{c_j,\alpha ^{E,c}u_j^E\}}{u_j^E}=\frac{\mathrm{CREA}_j(E,c)}{u_j^E}. \end{aligned}$$

    Hence, the constrained relative equal awards rule satisfies relative symmetry. Let \((E,c)\in \mathrm{BR}^N\). For all \(i\in N\),

    $$\begin{aligned} \mathrm{CREA}_i(E,\hat{c}^E)= & {} \min \{\hat{c}_i^E,\alpha ^{E,\hat{c}^E}u_i^E\} = \min \{\min \{c_i,u_i^E\},\alpha ^{E,\hat{c}^E}u_i^E\} \\= & {} \min \{c_i,u_i^E,\alpha ^{E,\hat{c}^E}u_i^E\} = \min \{c_i,\alpha ^{E,\hat{c}^E}u_i^E\}. \end{aligned}$$

    Since E is nonleveled, this means that \(\mathrm{CREA}(E,c)=\mathrm{CREA}(E,\hat{c}^E)\). Hence, the constrained relative equal awards rule satisfies truncation invariance. Let \((E,c)\in \mathrm{BR}^N\) and let \(t\in (0,1)\). For all \(i\in N\), \(\mathrm{CREA}_i(tE,c)=\min \{c_i,t\alpha ^{tE,c}u_i^E\}\). This means that \(\mathrm{CREA}(tE,c)\le \mathrm{CREA}(E,c)\). Denote \(d=\lambda ^{E,\mathrm{CREA}(E,c)-\mathrm{CREA}(tE,c)}\). Suppose that \(d\alpha ^{dE,c-\mathrm{CREA}(tE,c)}\le \alpha ^{E,c}-t\alpha ^{tE,c}\). For all \(i\in N\) with \(\mathrm{CREA}_i(tE,c)=c_i\),

    $$\begin{aligned} \mathrm{CREA}_i(dE,c-\mathrm{CREA}(tE,c))=0=c_i-c_i=\mathrm{CREA}_i(E,c)-\mathrm{CREA}_i(tE,c). \end{aligned}$$

    For all \(i\in N\) with \(\mathrm{CREA}_i(tE,c)=t\alpha ^{tE,c}u_i^E\),

    $$\begin{aligned} \mathrm{CREA}_i(dE,c-\mathrm{CREA}(tE,c))= & {} \min \left\{ c_i-\mathrm{CREA}_i(tE,c),\alpha ^{dE,c-\mathrm{CREA}(tE,c)}u_i^{dE}\right\} \\= & {} \min \left\{ c_i-t\alpha ^{tE,c}u_i^E,d\alpha ^{dE,c-\mathrm{CREA}(tE,c)}u_i^E\right\} \\\le & {} \min \left\{ c_i-t\alpha ^{tE,c}u_i^E,\alpha ^{E,c}u_i^E-t\alpha ^{tE,c}u_i^E\right\} \\= & {} \min \left. \{c_i,\alpha ^{E,c}u_i^E\}-t\alpha ^{tE,c}u_i^E \right. \\= & {} \mathrm{CREA}_i(E,c)-\mathrm{CREA}_i(tE,c). \end{aligned}$$

    Since E is nonleveled, \(\mathrm{CREA}(dE,c-\mathrm{CREA}(tE,c))\in \mathrm{P}(dE)\), and \(\mathrm{CREA}(E,c)-\mathrm{CREA}(tE,c)\in \mathrm{P}(dE)\), this means that

    $$\begin{aligned} \mathrm{CREA}(dE,c-\mathrm{CREA}(tE,c))=\mathrm{CREA}(E,c)-\mathrm{CREA}(tE,c). \end{aligned}$$

    Clearly, similar arguments apply to the case \(d\alpha ^{dE,c-\mathrm{CREA}(tE,c)}>\alpha ^{E,c}-t\alpha ^{tE,c}\). Hence, the constrained relative equal awards rule satisfies path composition up. Let f be a bankruptcy rule satisfying relative symmetry, truncation invariance, and path composition up. Let \((E,c)\in \mathrm{BR}^N\). Suppose that \(f(tE,c)\ne \mathrm{CREA}(tE,c)\) for some \(t\in [0,\lambda ^{E,c}]\). Define \(\hat{t}=\inf \{t\in [0,\lambda ^{E,c}]\mid f(tE,c)\ne \mathrm{CREA}(tE,c)\}\). By path continuity, \(\hat{t}\in [0,\lambda ^{E,c})\) and \(f(\hat{t}E,c)=\mathrm{CREA}(\hat{t}E,c)\). Denote \(N=\{1,\ldots ,|N|\}\) such that \(\frac{c_1}{u_1^E}\le \cdots \le \frac{c_{|N|}}{u_{|N|}^E}\). Let \(k\in N\) be such that \(f_i(\hat{t}E,c)=c_i\) for all \(i<k\), and \(f_i(\hat{t}E,c)=\hat{t}\alpha ^{\hat{t}E,c}u_i^E<c_i\) for all \(i\ge k\). Define \(m=\min \{\Vert x\Vert \mid x\in \mathrm{P}(E)\}\). Let \(\varepsilon \in (0,m(\frac{c_k}{u_k^E}-\frac{f_k(\hat{t}E,c)}{u_k^E}))\). By path continuity, there is a \(\delta >0\) such that \(\Vert f(tE,c)-f(\hat{t}E,c)\Vert <\varepsilon \) for all \(t\in (\hat{t},\min \{\hat{t}+\delta ,\lambda ^{E,c}\})\). Let \(t\in (\hat{t},\min \{\hat{t}+\delta ,\lambda ^{E,c}\})\). By path monotonicity, \(\lambda ^{E,f(tE,c)-f(\hat{t}E,c)}\in (0,\lambda ^{E,c})\). Denote \(d=\lambda ^{E,f(tE,c)-f(\hat{t}E,c)}\). By path composition up,

    $$\begin{aligned} m\left( \frac{c_k}{u_k^E}-\frac{f_k(\hat{t}E,c)}{u_k^E}\right)>\varepsilon >\Vert f(tE,c)-f(\hat{t}E,c)\Vert =\Vert f(dE,c-f(\hat{t}E,c))\Vert \ge dm. \end{aligned}$$

    This means that \(d<(\frac{c_k}{u_k^E}-\frac{f_k(\hat{t}E,c)}{u_k^E})\). Define \(\tilde{u}^{dE}\in \mathbb {R}_+^N\) by

    $$\begin{aligned} \tilde{u}_i^{dE}= {\left\{ \begin{array}{ll} 0&{}{{\text {for}}\;{\text {all}}\;i < k;} \\ {u_i^{dE}}&{}{{\text {for}}\;{\text {all}}\;i \ge k.} \end{array}\right. } \end{aligned}$$

    For all \(i<k\),

    $$\begin{aligned} \tilde{u}_i^{dE}=0=c_i-c_i=c_i-f_i(\hat{t}E,c)=c_i-\mathrm{CREA}_i(\hat{t}E,c). \end{aligned}$$

    For all \(i\ge k\),

    $$\begin{aligned} \tilde{u}_i^{dE}= & {} u_i^{dE}=du_i^E < \left( \frac{c_k}{u_k^E}-\frac{f_k(\hat{t}E,c)}{u_k^E}\right) u_i^E \le \left( \frac{c_i}{u_i^E}-\frac{\hat{t}\alpha ^{\hat{t}E,c}u_k^E}{u_k^E}\right) u_i^E \\= & {} c_i-\hat{t}\alpha ^{\hat{t}E,c}u_i^E = c_i-f_i(\hat{t}E,c) = c_i-\mathrm{CREA}_i(\hat{t}E,c). \end{aligned}$$

    By truncation invariance and relative symmetry,

    $$\begin{aligned} f\big (dE,c-f(\hat{t}E,c)\big )= & {} f\big (dE,\tilde{u}^{dE}\big ) = \frac{1}{\lambda ^{dE,\tilde{u}^{dE}}}\tilde{u}^{dE} \\= & {} \mathrm{CREA}\big (dE,\tilde{u}^{dE}\big ) = \mathrm{CREA}\big (dE,c-\mathrm{CREA}(\hat{t}E,c)\big ). \end{aligned}$$

    By composition up,

    $$\begin{aligned} f(tE,c)= & {} f(\hat{t}E,c)+f(dE,c-f(\hat{t}E,c)) \\= & {} \mathrm{CREA}(\hat{t}E,c)+\mathrm{CREA}(dE,c-\mathrm{CREA}(\hat{t}E,c)) \\= & {} \mathrm{CREA}(tE,c). \end{aligned}$$

    This contradicts the definition of \(\hat{t}\). Hence, \(f(tE,c)=\mathrm{CREA}(tE,c)\) for all \(t\in [0,\lambda ^{E,c}]\).

  2. (ii)

    Let \((E,c)\in \mathrm{BR}^N\) and let \(i\in N\) with \(c_i'>c_i\). If \(\alpha ^{E,(c_i',c_{N\setminus \{i\}})}\ge \alpha ^{E,c}\), then

    $$\begin{aligned} \mathrm{CREA}_i(E,(c_i',c_{N\setminus \{i\}}))=\min \{c_i',\alpha ^{E,(c_i',c_{N\setminus \{i\}})}u_i^E\}\ge \min \{c_i,\alpha ^{E,c}u_i^E\}=\mathrm{CREA}_i(E,c). \end{aligned}$$

    Suppose that \(\alpha ^{E,(c_i',c_{N\setminus \{i\}})}<\alpha ^{E,c}\). For all \(j\in N\setminus \{i\}\),

    $$\begin{aligned} \mathrm{CREA}_j(E,(c_i',c_{N\setminus \{i\}}))= & {} \min \{c_j,\alpha ^{E,(c_i',c_{N\setminus \{i\}})}u_j^E\}\le \min \{c_j,\alpha ^{E,c}u_j^E\}\\= & {} \mathrm{CREA}_j(E,c). \end{aligned}$$

    Since E is nonleveled, this means that \(\mathrm{CREA}_i(E,c')\ge \mathrm{CREA}_i(E,c)\). Hence, the constrained relative equal awards rule satisfies claim monotonicity. Let \((E,c)\in \mathrm{BR}^N\) and let \(i\in N\) with

    $$\begin{aligned} \left( \min \left\{ \frac{c_i}{u_i^E},\frac{c_j}{u_j^E}\right\} u_j^E\right) _{j\in N}\in E. \end{aligned}$$

    Suppose that \(\mathrm{CREA}_i(E,c)=\alpha ^{E,c}u_i^E\). For all \(j\in N\),

    $$\begin{aligned} \mathrm{CREA}_j(E,c)=\min \{c_j,\alpha ^{E,c}u_j^E\}=\min \left\{ \alpha ^{E,c},\frac{c_j}{u_j^E}\right\} u_j^E\le \min \left\{ \frac{c_i}{u_i^E},\frac{c_j}{u_j^E}\right\} u_j^E. \end{aligned}$$

    Since E is nonleveled, this means that \(\mathrm{CREA}_i(E,c)=c_i\). Hence, the constrained relative equal awards rule satisfies conditional full compensation. Let f be a bankruptcy rule satisfying claim monotonicity and conditional full compensation. Let \((E,c)\in \mathrm{BR}^N\). Let \(i\in N\) with \(\mathrm{CREA}_i(E,c)=c_i\). For all \(j\in N\),

    $$\begin{aligned} \min \left\{ \frac{c_i}{u_i^E},\frac{c_j}{u_j^E}\right\} u_j^E\le \min \left\{ \alpha ^{E,c},\frac{c_j}{u_j^E}\right\} u_j^E=\min \{c_j,\alpha ^{E,c}u_j^E\}=\mathrm{CREA}_j(E,c). \end{aligned}$$

    Since E is comprehensive, this means that

    $$\begin{aligned} \left( \min \left\{ \frac{c_i}{u_i^E},\frac{c_j}{u_j^E}\right\} u_j^E\right) _{j\in N}\in E. \end{aligned}$$

    By conditional full compensation, \(f_i(E,c)=c_i\). Suppose that \(f(E,c)\ne \mathrm{CREA}(E,c)\). Since E is nonleveled, there is a \(k\in N\) with \(f_k(E,c)<\mathrm{CREA}_k(E,c)=\alpha ^{E,c}u_k^E<c_k\). Define \(c_k'=\alpha ^{E,c}u_k^E\). For all \(j\in N\),

    $$\begin{aligned} \min \left\{ \frac{c_k'}{u_k^E},\frac{c_j}{u_j^E}\right\} u_j^E=\min \left\{ \alpha ^{E,c},\frac{c_j}{u_j^E}\right\} u_j^E=\min \{c_j,\alpha ^{E,c}u_j^E\}=\mathrm{CREA}_j(E,c). \end{aligned}$$

    This means that

    $$\begin{aligned} \left( \min \left\{ \frac{c_k'}{u_k^E},\frac{c_j}{u_j^E}\right\} u_j^E\right) _{j\in N}\in E. \end{aligned}$$

    By conditional full compensation, \(f_k(E,(c_k',c_{N\setminus \{k\}}))=c_k'\). Then \(f_k(E,(c_k',c_{N\setminus \{k\}}))>f_k(E,c)\), contradicting claim monotonicity. Hence, \(f(E,c)=\mathrm{CREA}(E,c)\).

  3. (iii)

    By Theorem 3(ii), the constrained relative equal awards rule satisfies conditional full compensation. Let \((E,c)\in \mathrm{BR}^N\) and let \(t\in (0,1)\). For all \(i\in N\), \(\mathrm{CREA}_i(tE,c)=\min \{c_i,t\alpha ^{tE,c}u_i^E\}\). This means that \(\mathrm{CREA}(tE,c)\le \mathrm{CREA}(E,c)\). Suppose that \(\alpha ^{tE,\mathrm{CREA}(E,c)}\le \alpha ^{tE,c}\). For all \(i\in N\),

    $$\begin{aligned} \mathrm{CREA}_i(tE,\mathrm{CREA}(E,c))= & {} \min \{\mathrm{CREA}_i(E,c),\alpha ^{tE,\mathrm{CREA}(E,c)}u_i^{tE}\} \\\le & {} \min \{\min \{c_i,\alpha ^{E,c}u_i^E\},\alpha ^{tE,c}u_i^{tE}\} \\= & {} \min \{\min \{c_i,\alpha ^{E,c}u_i^E\},\min \{c_i,\alpha ^{tE,c}u_i^{tE}\}\} \\= & {} \min \{\mathrm{CREA}_i(E,c),\mathrm{CREA}_i(tE,c)\} \\= & {} \mathrm{CREA}_i(tE,c). \end{aligned}$$

    Since E is nonleveled, \(\mathrm{CREA}(tE,\mathrm{CREA}(E,c))\in \mathrm{P}(tE)\), and \(\mathrm{CREA}(tE,c)\in \mathrm{P}(tE)\), this means that \(\mathrm{CREA}(tE,\mathrm{CREA}(E,c))=\mathrm{CREA}(tE,c)\). Clearly, similar arguments apply to the case \(\alpha ^{tE,\mathrm{CREA}(E,c)}>\alpha ^{tE,c}\). Hence, the constrained relative equal awards rule satisfies path composition down. Let f be a bankruptcy rule satisfying conditional full compensation and path composition down. Let \((E,c)\in \mathrm{BR}^N\). Let \(i\in N\) with \(\mathrm{CREA}_i(E,c)=c_i\). For all \(j\in N\),

    $$\begin{aligned} \min \left\{ \frac{c_i}{u_i^E},\frac{c_j}{u_j^E}\right\} u_j^E\le \min \left\{ \alpha ^{E,c},\frac{c_j}{u_j^E}\right\} u_j^E=\min \{c_j,\alpha ^{E,c}u_j^E\}=\mathrm{CREA}_j(E,c). \end{aligned}$$

    Since E is comprehensive, this means that

    $$\begin{aligned} \left( \min \left\{ \frac{c_i}{u_i^E},\frac{c_j}{u_j^E}\right\} u_j^E\right) _{j\in N}\in E. \end{aligned}$$

    By conditional full compensation, \(f_i(E,c)=c_i\). Suppose that \(f(E,c)\ne \mathrm{CREA}(E,c)\). Since E is nonleveled, there is a \(k\in N\) with \(f_k(E,c)<\mathrm{CREA}_k(E,c)=\alpha ^{E,c}u_k^E<c_k\). By path monotonicity and path continuity, there is a \(t\in (1,\lambda ^{E,c})\) such that \(f_k(tE,c)=\alpha ^{E,c}u_k^E\). For all \(j\in N\),

    $$\begin{aligned} \min \left\{ \frac{f_k(tE,c)}{u_k^E},\frac{f_j(tE,c)}{u_j^E}\right\} u_j^E\le \min \left\{ \alpha ^{E,c},\frac{c_j}{u_j^E}\right\} u_j^E=\mathrm{CREA}_j(E,c). \end{aligned}$$

    Since E is comprehensive, this means that

    $$\begin{aligned} \left( \min \left\{ \frac{f_k(tE,c)}{u_k^E},\frac{f_j(tE,c)}{u_j^E}\right\} u_j^E\right) _{j\in N}\in E. \end{aligned}$$

    By conditional full compensation, \(f_k(E,f(tE,c))=f_k(tE,c)\). By path composition down, \(f_k(E,c)=f_k(tE,c)\). This is a contradiction. Hence, \(f(E,c)=\mathrm{CREA}(E,c)\).

  4. (iv)

    By Theorem 3(i), the constrained relative equal awards rule satisfies relative symmetry. Let \((E,c)\in \mathrm{BR}^N\) and let \(i,j\in N\) with \(i\ne j\) and \(\frac{c_j'}{u_j^E}>\frac{c_j}{u_j^E}\ge \frac{c_i}{u_i^E}\). Suppose that \(\alpha ^{E,(c_j',c_{N\setminus \{j\}})}\ge \alpha ^{E,c}\). For all \(k\in N\),

    $$\begin{aligned} \mathrm{CREA}_k(E,(c_j',c_{N\setminus \{j\}}))\ge \min \{c_k,\alpha ^{E,c}u_k^E\}=\mathrm{CREA}_k(E,c). \end{aligned}$$

    Since E is nonleveled, this means that \(\mathrm{CREA}(E,(c_j',c_{N\setminus \{j\}}))=\mathrm{CREA}(E,c)\). Now suppose that \(\alpha ^{E,(c_j',c_{N\setminus \{j\}})}<\alpha ^{E,c}\). For all \(k\in N\setminus \{j\}\),

    $$\begin{aligned} \mathrm{CREA}_k(E,(c_j',c_{N\setminus \{j\}}))\le \min \{c_k,\alpha ^{E,c}u_k^E\}=\mathrm{CREA}_k(E,c). \end{aligned}$$

    Suppose that \(\mathrm{CREA}_i(E,(c_j',c_{N\setminus \{j\}}))<\mathrm{CREA}_i(E,c)\). Then \(\alpha ^{E,(c_j',c_{N\setminus \{j\}})}<\frac{c_i}{u_i^E}\). Since E is nonleveled, \(\mathrm{CREA}_j(E,(c_j',c_{N\setminus \{j\}}))>\mathrm{CREA}_j(E,c)\). Then \(\alpha ^{E,(c_j',c_{N\setminus \{j\}})}>\frac{c_j}{u_j^E}\). This is a contradiction. Hence, \(\mathrm{CREA}_i(E,(c_j',c_{N\setminus \{j\}}))=\mathrm{CREA}_i(E,c)\) and the constrained relative equal awards rule satisfies independence of larger relative claims. Let f be a bankruptcy rule satisfying relative symmetry and independence of larger relative claims. Let \((E,c)\in \mathrm{BR}^N\). Denote \(N=\{1,\ldots ,|N|\}\) such that \(\frac{c_1}{u_1^E}\le \cdots \le \frac{c_{|N|}}{u_{|N|}^E}\). Let \(k\in N\) be such that \(\mathrm{CREA}_i(E,c)=c_i\) for all \(i<k\), and \(\mathrm{CREA}_i(E,c)=\alpha ^{E,c}u_i^E<c_i\) for all \(i\ge k\). For all \(i<k\), by independence of larger relative claims,

    $$\begin{aligned} f_i(E,c)=f_i(E,\mathrm{CREA}(E,c))=\mathrm{CREA}_i(E,c). \end{aligned}$$

    For all \(i\ge k\), define \(c^i\in \mathbb {R}_+^N\) by

    $$\begin{aligned} c_j^i= {\left\{ \begin{array}{ll} {{c_j}}&{}{{\text {for}}\;{\text {all}}\;j \le i;} \\ {\frac{{{c_i}}}{{u_i^E}}u_j^E}&{}{{\text {for}}\;{\text {all}}\;j > i.} \end{array}\right. } \end{aligned}$$

    By independence of larger relative claims and relative symmetry,

    $$\begin{aligned} f_k(E,c)=f_k(E,c^k)=\alpha ^{E,c^k}u_k^E=\mathrm{CREA}_k(E,c^k)=\mathrm{CREA}_k(E,c). \end{aligned}$$

    Next, these arguments apply to claimant \(k+1\). Continuing this reasoning, \(f_i(E,c)=\mathrm{CREA}_i(E,c)\) for all \(i\ge k\). Hence, \(f(E,c)=\mathrm{CREA}(E,c)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dietzenbacher, B., Estévez-Fernández, A., Borm, P. et al. Proportionality, equality, and duality in bankruptcy problems with nontransferable utility. Ann Oper Res 301, 65–80 (2021). https://doi.org/10.1007/s10479-020-03643-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03643-3

Keywords

JEL Classification

Navigation