An exact scalarization method with multiple reference points for bi-objective integer linear optimization problems

  • Angelo Aliano FilhoEmail author
  • Antonio Carlos Moretti
  • Margarida Vaz Pato
  • Washington Alves de Oliveira
S.I.: MOPGP 2017


This paper presents an exact scalarization method to solve bi-objective integer linear optimization problems. This method uses diverse reference points in the iterations, and it is free from any kind of a priori chosen weighting factors. In addition, two new adapted scalarization methods from literature and the modified Tchebycheff method are studied. Each one of them results in different ways to obtain the Pareto frontier. Computational experiments were performed with random real size instances of two special problems related to the manufacturing industry, which involve lot sizing and cutting stock problems. Extensive tests confirmed the very good performance of the new scalarization method with respect to the computational effort, the number of achieved solutions, the ability to achieve different solutions, and the spreading and spacing of solutions at the Pareto frontier.


Bi-objective optimization problems Integer linear optimization Exact scalarization methods 



The authors are indebted to the anonymous reviewers for their helpful comments. In addition, we thank the Federal Technological University of Parana for the support of this research. The research of Margarida Vaz Pato was supported by National Funding from FCT - Fundação para Ciência e a Tecnologia, Portugal, under Project UID/MAT/04561/2019 and UID/Multi/00491/2013.


  1. Aliano Filho, A., Moretti, A. C., & Pato, M. V. (2018). A comparative study of exact methods for the bi-objective integer one-dimensional cutting stock problem. Journal of the Operational Research Society, 69(1), 91–107.CrossRefGoogle Scholar
  2. Anthony, P., Xavier, G., & Ehrgott, M. (2009). Computational results for four exact methods to solve the three-objective assignment problem. In Multiobjective programming and goal programming (pp. 79–88). Berlin: SpringerGoogle Scholar
  3. Araujo, S. A., & Arenales, M. N. (2000). Problema de dimensionamento de lotes monoestágio com restrição de capacidade: modelagem, método de resolução e resultados computacionais. Pesquisa Operacional, 20, 287–306.CrossRefGoogle Scholar
  4. Ben-Daya, M., Darwish, M., & Ertogral, K. (2008). The joint economic lot sizing problem: Review and extensions. European Journal of Operational Research, 185(2), 726–742.CrossRefGoogle Scholar
  5. Benson, H. (1978). Existence of efficient solutions for vector maximization problems. Journal of Optimization Theory and Applications, 26(4), 569–580.CrossRefGoogle Scholar
  6. Benson, H. (1998). An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem. Journal of Global Optimization, 13(1), 1–24.CrossRefGoogle Scholar
  7. Bérubé, J. F., Gendreau, M., & Potvin, J. Y. (2009). An exact \(\varepsilon \)-constraint method for bi-objective combinatorial optimization problems: Application to the traveling salesman problem with profits. European Journal of Operational Research, 194(1), 39–50.CrossRefGoogle Scholar
  8. Bowman, V. (1976). On the relationship of the Tchebycheff norm and the efficient frontier of multiple-criteria objectives. In H. Thieriez (Ed.), Multiple criteria decision making (Vol. 130)., Lecture notes in economics and mathematical systems Berlin: Springer.CrossRefGoogle Scholar
  9. Branke, J., Deb, K., Miettinen, K., & Slowiński, R. (2008). Multiobjective optimization: Interactive and evolutionary approaches (Vol. 5252)., Lecture notes in computer science Berlin: Springer.CrossRefGoogle Scholar
  10. Clímaco, J., Ferreira, C., & Captivo, M. E. (1997a). Multicriteria integer programming: An overview of the different algorithmic approaches. In Multicriteria analysis: Proceedings of the XIth international conference on MCDM, 1–6 August 1994, Coimbra, Portugal (pp. 248–258). Berlin: Springer.Google Scholar
  11. Clímaco, J., Ferreira, C., & Captivo, M. E. (1997b). Multicriteria integer programming: An overview of the different algorithmic approaches. In J. Clímaco (Ed.), Multicriteria analysis (pp. 248–258). Berlin: Springer.CrossRefGoogle Scholar
  12. Cohon, J. L. (2003). Multiobjective programming and planning. Mineola, NY: Dover Publications. (Originally published: New York: Academic Press, 2003. in series: Mathematics in Science and Engineering. With new pref.).Google Scholar
  13. Collette, Y., & Siarry, P. (2005). Three new metrics to measure the convergence of metaheuristics towards the pareto frontier and the aesthetic of a set of solutions in biobjective optimization. Computers and Operations Research, 32(4), 773–792.CrossRefGoogle Scholar
  14. Czyzżak, P., & Jaszkiewicz, A. (1998). Pareto simulated annealing—A metaheuristic technique for multiple-objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis, 7(1), 34–47.CrossRefGoogle Scholar
  15. Dächert, K., Gorski, J., & Klamroth, K. (2012). An augmented weighted Tchebycheff method with adaptively chosen parameters for discrete bicriteria optimization problems. Computational and Operational Research, 39(12), 2929–2943.CrossRefGoogle Scholar
  16. Dai, R., & Charkhgard, H. (2018). A two-stage approach for bi-objective integer linear programming. Operations Research Letters, 46(1), 81–87.CrossRefGoogle Scholar
  17. Das, I., & Dennis, J. E. (1998). Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM Journal on Optimization, 8(3), 631–657.CrossRefGoogle Scholar
  18. Deb, K. (2014). Multi-objective optimization. In Search methodologies (pp. 403–449). Boston: Springer. Google Scholar
  19. Deb, K., & Kalyanmoy, D. (2001). Multi-objective optimization using evolutionary algorithms. New York, NY: Wiley.Google Scholar
  20. Deb, K. & Sundar, J. (2006). Reference point based multi-objective optimization using evolutionary algorithms. In Proceedings of the 8th annual conference on genetic and evolutionary computation, GECCO ’06 (pp. 635–642). New York, NY: ACM.Google Scholar
  21. Ehrgott, M. (2005). Multicriteria optimization (Vol. 491). Berlin: Springer.Google Scholar
  22. Ehrgott, M., & Gandibleux, X. (2000). A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spektrum, 22(4), 425–460.CrossRefGoogle Scholar
  23. Ehrgott, M., & Gandibleux, X. (2002). Multiobjective combinatorial optimization—Theory, methodology, and applications (pp. 369–444). Boston, MA: Springer.Google Scholar
  24. Gau, T., & Wascher, G. (1995). CUTGEN: A problem generator for the standard one-dimensional cutting stock problem. European Journal of Operational Research, 84(3), 572–579.CrossRefGoogle Scholar
  25. Gilmore, P. C., & Gomory, R. E. (1961). A linear programming approach to the cutting-stock problem. Operations Research, 9, 848–859.CrossRefGoogle Scholar
  26. Gilmore, P. C., & Gomory, R. E. (1963). A linear programming approach to the cutting-stock problem—part II. Operations Research, 11, 863–888.CrossRefGoogle Scholar
  27. Golfeto, R. R., Moretti, A. C., & Salles, L. L. N. (2009). A genetic symbiotic algorithm applied to the one-dimensional cutting stock problem. Pesquisa Operacional (impresso), 9, 365–382.CrossRefGoogle Scholar
  28. Karimi, B., Ghomi, S. F., & Wilson, J. (2003). The capacitated lot sizing problem: A review of models and algorithms. Omega, 31(5), 365–378.CrossRefGoogle Scholar
  29. Kettani, O., Aouniïd, B., & Martel, J. M. (2004). The double role of the weight factor in the goal programming model. Computers and Operations Research, 31(11), 1833–1845.CrossRefGoogle Scholar
  30. Kim, I., & de Weck, O. (2005). Adaptive weighted-sum method for bi-objective optimization: Pareto front generation. Structural and Multidisciplinary Optimization, 29(2), 149–158.CrossRefGoogle Scholar
  31. Klein, D., & Hannan, E. (1982). An algorithm for the multiple objective integer linear programming problem. European Journal of Operational Research, 9(4), 378–385.CrossRefGoogle Scholar
  32. Knowles, J., & Corne, D. (2002). On metrics for comparing nondominated sets. In Proceedings of the 2002 congress on evolutionary computation, 2002. CEC’02 (Vol. 1, pp. 711–716). IEEE.Google Scholar
  33. Laumanns, M., Thiele, L., & Zitzler, E. (2006). An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method. European Journal of Operational Research, 169(3), 932–942.CrossRefGoogle Scholar
  34. Lazimy, R. (2013). Interactive polyhedral outer approximation (IPOA) strategy for general multiobjective optimization problems. Annals of Operations Research, 210(1), 73–99.CrossRefGoogle Scholar
  35. Luque, M. (2015). Modified interactive Tchebyshev algorithm (MICA) for non-convex multiobjective programming. Optimization Letters, 9(1), 173–187.CrossRefGoogle Scholar
  36. Luque, M., Lopez-Agudo, L., & Marcenaro-Gutierrez, O. (2015). Equivalent reference points in multiobjective programming. Expert Systems with Applications, 42(4), 2205–2212.CrossRefGoogle Scholar
  37. Luque, M., Miettinen, K., Eskelinen, P., & Ruiz, F. (2009). Incorporating preference information in interactive reference point methods for multiobjective optimization. Omega, 37(2), 450–462.CrossRefGoogle Scholar
  38. Luque, M., Miettinen, K., Ruiz, A. B., & Ruiz, F. (2012). A two-slope achievement scalarizing function for interactive multiobjective optimization. Computers and Operations Research, 39(7), 1673–1681.CrossRefGoogle Scholar
  39. Luque, M., Ruiz, F., & Steuer, R. E. (2010). Modified interactive Tchebyshev algorithm (MICA) for convex multiobjective programming. European Journal of Operational Research, 204(3), 557–564.CrossRefGoogle Scholar
  40. Madsen, O. B., Ravn, H. F., & Rygaard, J. M. (1995). A heuristic algorithm for a dial-a-ride problem with time windows, multiple capacities, and multiple objectives. Annals of Operations Research, 60(1), 193–208.CrossRefGoogle Scholar
  41. Messac, A., Ismail-Yahaya, A., & Mattson, C. (2003). The normalized normal constraint method for generating the Pareto frontier. Structural and Multidisciplinary Optimization, 25(2), 86–98.CrossRefGoogle Scholar
  42. Miettinen, K. (1999). Nonlinear multiobjective optimization., volume 12 of International series in operations research and management science Dordrecht: Kluwer.Google Scholar
  43. Miettinen, K., Eskelinen, P., Luque, M., & Ruiz, F. (2009). On the use of preferential weights in interactive reference point based methods. In Multiobjective programming and goal programming (pp. 211–220). Berlin: Springer. Google Scholar
  44. Molina, J., Santana, L. V., Hernández-Díaz, A. G., Coello, C. A. C., & Caballero, R. (2009). g-dominance: Reference point based dominance for multiobjective metaheuristics. European Journal of Operational Research, 197(2), 685–692.CrossRefGoogle Scholar
  45. Neumayer, P., & Schweigert, D. (1994). Three algorithms for bicriteria integer linear programs. Operations Research Spektrum, 16(4), 267–276.CrossRefGoogle Scholar
  46. Ouaïl, F. Z., & Chergui, M. E. A. (2018). A branch-and-cut technique to solve multiobjective integer quadratic programming problems. Annals of Operations Research, 267(1–2), 431–446.CrossRefGoogle Scholar
  47. Özlen, M., & Azizoğlu, M. (2009). Multi-objective integer programming: A general approach for generating all non-dominated solutions. European Journal of Operational Research, 199(1), 25–35.CrossRefGoogle Scholar
  48. Poldi, K. C., & Arenales, M. N. (2009). Heuristics for the one-dimensional cutting stock problem with limited multiple stock lengths. Computers and Operations Research, 36, 2074–2081.CrossRefGoogle Scholar
  49. Ralphs, T. K., Saltzman, M. J., & Wiecek, M. M. (2006). An improved algorithm for solving biobjective integer programs. Annals of Operations Research, 147(1), 43–70.CrossRefGoogle Scholar
  50. Ruzika, S., & Wiecek, M. M. (2003). A survey of approximation methods in multiobjective programming. Journal of Optimization Theory and Applications, 126(3), 473–501.CrossRefGoogle Scholar
  51. Ruzika, S., & Wiecek, M. M. (2005). Approximation methods in multiobjective programming. Journal of Optimization Theory and Applications, 126(3), 473–501.CrossRefGoogle Scholar
  52. Sawik, T. (2007). A lexicographic approach to bi-objective scheduling of single-period orders in make-to-order manufacturing. European Journal of Operational Research, 180(3), 1060–1075.CrossRefGoogle Scholar
  53. Sayin, S., & Kouvelis, P. (2005). The multiobjective discrete optimization problem: A weighted min-max two-stage optimization approach and a bicriteria algorithm. Management Science, 51(10), 1572–1581.CrossRefGoogle Scholar
  54. Schandl, B., Klamroth, K., & Wiecek, M. (2001). Norm-based approximation in bicriteria programming. Computational Optimization and Applications, 20(1), 23–42.CrossRefGoogle Scholar
  55. Shao, L., & Ehrgott, M. (2016). Discrete representation of non-dominated sets in multi-objective linear programming. European Journal of Operational Research, 255(3), 687–698.CrossRefGoogle Scholar
  56. Shim, H. S., Lee, S. H., & Kang, B. S. (2017). Pareto front generation for bridge deck management system using bi-objective optimization. KSCE Journal of Civil Engineering, 21(5), 1563–1572.CrossRefGoogle Scholar
  57. Shukla, P. K. (2007). On the normal boundary intersection method for generation of efficient front (pp. 310–317). Berlin: Springer.Google Scholar
  58. Solanki, R. (1991). Generating the noninferior set in mixed integer biobjective linear programs: An application to a location problem. Computers and Operations Research, 18(1), 1–15.CrossRefGoogle Scholar
  59. Steuer, R., & Choo, E.-U. (1983). An interactive weighted Tchebycheff procedure for multiple objective programming. Mathematical Programming, 26(3), 326–344.CrossRefGoogle Scholar
  60. Sylva, J., & Crema, A. (2004). A method for finding the set of non-dominated vectors for multiple objective integer linear programs. European Journal of Operational Research, 158(1), 46–55.CrossRefGoogle Scholar
  61. Ustun, O., & Demirtas, E. A. (2008). An integrated multi-objective decision-making process for multi-period lot-sizing with supplier selection. Omega, 36(4), 509–521. (Special Issue on Logistics: New Perspectives and Challenges.).CrossRefGoogle Scholar
  62. Wierzbicki, A. P. (1980). The use of reference objectives in multiobjective optimization. In Multiple criteria decision making theory and application (pp. 468–486). Berlin: Springer.Google Scholar
  63. Xia, W., & Wu, Z. (2005). An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems. Computers and Industrial Engineering, 48(2), 409–425.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Academic Department of MathematicsFederal Technological University of ParanáApucaranaBrazil
  2. 2.Institute of Mathematics, Statistics and Scientific ComputationUniversity of CampinasCampinasBrazil
  3. 3.ISEG and CMAFcIOUniversidade de LisboaLisbonPortugal
  4. 4.School of Applied SciencesUniversity of CampinasLimeiraBrazil

Personalised recommendations