An analytics approach to the FIFA ranking procedure and the World Cup final draw

  • Sebastián Cea
  • Guillermo DuránEmail author
  • Mario Guajardo
  • Denis Sauré
  • Joaquín Siebert
  • Gonzalo Zamorano
S.I.: CLAIO 2016


This paper analyzes the procedure used by FIFA up until 2018 to rank national football teams and define by random draw the groups for the initial phase of the World Cup finals. A predictive model is calibrated to form a reference ranking to evaluate the performance of a series of simple changes to that procedure. These proposed modifications are guided by a qualitative and statistical analysis of the FIFA ranking. We then analyze the use of this ranking to determine the groups for the World Cup finals. After enumerating a series of deficiencies in the group assignments for the 2014 World Cup, a mixed integer linear programming model is developed and used to balance the difficulty levels of the groups.


OR in sports Analytics Ranking FIFA World Cup Football 



We would like to sincerely thank two reviewers for their valuable suggestions that allowed us to considerably improve a preliminary version of this work. We also thank ISCI, Chile (CONICYT PIA FB0816) for its support. The second author was partially financed by ANPCyT PICT Grant 2015-2218 (Argentina) and UBACyT Grant 20020170100495BA (Argentina).


  1. Alarcón, F., Durán, G., Guajardo, M., Miranda, J., Muñoz, H., Ramírez, L., et al. (2017). Operations research transforms the scheduling of Chilean soccer leagues and South American World Cup qualifiers. Interfaces, 47(1), 52–69.CrossRefGoogle Scholar
  2. Anderson, S. P., de Palma, A., & Thisee, J.-F. (1992). Discrete choice theory of product differentiation. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  3. Bezanson, Jeff, Edelman, Alan, Karpinski, Stefan, & Shah, Viral B. (2017). Julia: A fresh approach to numerical computing. SIAM Review, 59(1), 65–98.CrossRefGoogle Scholar
  4. Bradley, R. A., & Terry, M. E. (1952). Rank analysis of incomplete block designs: I. The method of paired comparisons. Biometrika, 39(3/4), 324–345.CrossRefGoogle Scholar
  5. Coleman, B. J. (2005). Minimizing game score violations in college football rankings. Interfaces, 35(6), 483–496.CrossRefGoogle Scholar
  6. Davidson, R. R. (1970). On extending the Bradley–Terry model to accommodate ties in paired comparison experiments. Journal of the American Statistical Association, 65(329), 317–328.CrossRefGoogle Scholar
  7. Dixon, M., & Robinson, M. (1998). A birth process model for association football matches. Journal of the Royal Statistical Society: Series D (The Statistician), 47(3), 523–538.Google Scholar
  8. Downward, P., & Jones, M. (2007). Effects of crowd size on referee decisions: Analysis of the FA Cup. Journal of Sports Sciences, 25(14), 1541–1545.CrossRefGoogle Scholar
  9. Durán, G., Guajardo, M., & Sauré, D. (2017). Scheduling the South American Qualifiers to the 2018 FIFA World Cup by integer programming. European Journal of Operational Research, 262(3), 1109–1115.CrossRefGoogle Scholar
  10. Dyte, D., & Clarke, S. R. (2000). A ratings based Poisson model for World Cup soccer simulation. The Journal of the Operational Research Society, 51(8), 993–998.CrossRefGoogle Scholar
  11. FIFA. (2014a). 2014 FIFA World Cup Brazil technical report and statistics.Google Scholar
  12. FIFA. (2014b). 2014 FIFA World Cup Brazil television audience report.Google Scholar
  13. FIFA. (2017). FIFA ranking. Accessed March 07, 2017.
  14. FIFA. (2018). Revision of the FIFA/Coca-Cola World Ranking. Accessed April 24, 2019.
  15. Gurobi Optimizer Reference Manual. Accessed April 24, 2019.
  16. Guyon, J. (2014). The World Cup draw is unfair. Here’s a better way. The New York Times. Accessed Feb 05, 2019.
  17. Guyon, J. (2015). Rethinking the FIFA World Cup final draw. Journal of Quantitatie Analysis in Sports, 11(3), 169–182.Google Scholar
  18. Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning. New York: Springer.CrossRefGoogle Scholar
  19. Huchette, Joey, & Lubin, Miles. (2017). JuMP: A modeling language for mathematical optimization. SIAM Review, 59(2), 295–320.CrossRefGoogle Scholar
  20. Karlis, D., & Ntzoufras, I. (2003). Analysis of sports data by using bivariate Poisson models. Journal of the Royal Statistical Society: Series D (The Statistician), 52(3), 381–393.Google Scholar
  21. Karlis, D., & Ntzoufras, I. (2008). Bayesian modelling of football outcomes: using the Skellam’s distribution for the goal difference. IMA Journal of Management Mathematics, 20(2), 133–145.CrossRefGoogle Scholar
  22. Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1/2), 81–93.CrossRefGoogle Scholar
  23. Lasek, J., Szlávik, Z., & Bhulai, S. (2013). The predictive power of ranking systems in association football. International Journal of Applied Pattern Recognition, 1(1), 27–46.CrossRefGoogle Scholar
  24. Lasek, J., Szlávik, Z., Gagolewski, M., & Bhulai, S. (2016). How to improve a team’s position in the FIFA ranking? A simulation study. Journal of Applied Statistics, 43(7), 1349–1368.CrossRefGoogle Scholar
  25. Lillestøl, J., & Andersson, J. (2011). The Z-Poisson distribution with application to the modelling of soccer score probabilities. Statistical Modelling, 11(6), 507–522.CrossRefGoogle Scholar
  26. Maher, M. J. (1982). Modelling association football scores. Statistica Neerlandica, 36(3), 109–118.CrossRefGoogle Scholar
  27. Martinich, J. (2002). College football rankings: Do the computers know best? Interfaces, 32(5), 85–94.CrossRefGoogle Scholar
  28. McHale, I., & Davies, S. (2007). Statistical analysis of the effectiveness of the FIFA world rankings. In Statistical thinking in sports (pp. 77–89). CRC Press.Google Scholar
  29. Pollard, R. (1986). Home advantage in soccer: A retrospective analysis. Journal of Sports Sciences, 4(3), 237–248.CrossRefGoogle Scholar
  30. Rue, H., & Salvesen, O. (2000). Prediction and retrospective analysis of soccer matches in a league. Journal of the Royal Statistical Society: Series D (The Statistician), 49(3), 399–418.CrossRefGoogle Scholar
  31. Scarf, P. A., & Yusof, M. M. (2011). A numerical study of tournament structure and seeding policy for the soccer World Cup Finals. Statistica Neerlandica, 65(1), 43–57.CrossRefGoogle Scholar
  32. Suzuki, K. A., Salasar, B. L. E., Leite, G. J., & Louzada-Neto, F. (2010). A Bayesian approach for predicting match outcomes: The 2006 (Association) Football World Cup. Journal of the Operational Research Society, 61(10), 1530–1539.CrossRefGoogle Scholar
  33. Van Haaren, J., & Van den Broeck, G. (2015). Relational learning for football-related predictions. In Latest advances in inductive logic programming (pp. 237–244).Google Scholar
  34. World Football Elo Ratings. Accessed April 24, 2019.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Industrial EngineeringUniversity of ChileSantiagoChile
  2. 2.Department of Mathematics and Calculus Institute, FCENUniversity of Buenos AiresBuenos AiresArgentina
  3. 3.CONICETBuenos AiresArgentina
  4. 4.Department of Industrial EngineeringUniversity of ChileSantiagoChile
  5. 5.Ciudad UniversitariaBuenos AiresArgentina
  6. 6.Department of Business and Management ScienceNHH Norwegian School of EconomicsBergenNorway

Personalised recommendations