Advertisement

Bi-objective optimization for a two-depot automated storage/retrieval system

  • Xiaoyi Man
  • Feifeng Zheng
  • Feng ChuEmail author
  • Ming Liu
  • Yinfeng Xu
S.I.: MOPGP 2017
  • 14 Downloads

Abstract

Operation management of automated storage and retrieval system (AS/RS) has a great impact on system performance and is a hot research topic. Most existing works for AS/RS operation management address determining storage and retrieval (S/R) machine sequence and minimizing its travel time. In the paper, we study a new bi-objective S/R machine sequencing problem with task release time and due date in a two-depot AS/RS. The objective is to minimize the total travel time of the S/R machine and the total tardiness simultaneously. For the problem, a new bi-objective mixed integer linear programming model is established. Based on problem property analysis, an exact \(\epsilon \)-constraint method, a non-dominated sorting genetic algorithm II and a promising heuristic are devised for the problem. Especially, the computational results show the efficiency and effectiveness of the proposed algorithms.

Keywords

Container terminal Automated storage/retrieval system Two-depot Bi-objective optimization Mixed integer linear programming Algorithms 

Notes

References

  1. Asariotis, R., Assaf, M., Benamara, H., Fugazza, M., Homann, J., Premti, A., et al. (2018). Review of maritime transport.Google Scholar
  2. Cheng, J., Chu, F., Liu, M., Wu, P., & Xia, W. (2017). Bi-criteria single-machine batch scheduling with machine on/off switching under time-of-use tariffs. Computers & Industrial Engineering, 112, 721–734.  https://doi.org/10.1016/j.cie.2017.04.026.CrossRefGoogle Scholar
  3. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.CrossRefGoogle Scholar
  4. Demir, E., Bektaş, T., & Laporte, G. (2014). The bi-objective pollution-routing problem. European Journal of Operational Research, 232(3), 464–478.CrossRefGoogle Scholar
  5. Dooly, D. R., & Lee, H. F. (2008). A shift-based sequencing method for twin-shuttle automated storage and retrieval systems. IIE Transactions, 40(6), 586–594.CrossRefGoogle Scholar
  6. Gharehgozli, A. H., Yu, Y., Zhang, X., & De Koster, R. B. M. (2017). Polynomial time algorithms to minimize total travel time in a two-depot automated storage/retrieval system. Transportation Science, 51, 19–33.CrossRefGoogle Scholar
  7. Gharehgozli, A. H., Yu, Y., Zhang, X., De Koster, R. B. M., & Udding, J. T. (2014). An exact method for scheduling a yard crane. European Journal of Operational Research, 235(2), 431–447.CrossRefGoogle Scholar
  8. Han, M. H., McGinnis, L. F., Shieh, J. S., & White, J. A. (1987). On sequencing retrievals in an automated storage/retrieval system. IIE Transactions, 19(1), 56–66.CrossRefGoogle Scholar
  9. Lee, H. F., & Schaefer, S. K. (1996). Retrieval sequencing for unit-load automated storage and retrieval systems with multiple openings. International Journal of Production Research, 34(10), 2943–2962.CrossRefGoogle Scholar
  10. Lee, H. F., & Schaefer, S. K. (1997). Sequencing methods for automated storage and retrieval systems with dedicated storage. Computers & Industrial Engineering, 32(2), 351–362.CrossRefGoogle Scholar
  11. Liu, M., Lee, C. Y., Zhang, Z., & Chu, C. (2016). Bi-objective optimization for the container terminal integrated planning. Transportation Research Part B Methodological, 93, 720–749.CrossRefGoogle Scholar
  12. Mahajan, S., Rao, B. V., & Peters, B. A. (1998). A retrieval sequencing heuristic for miniload end-of-aisle automated storage/retrieval systems. International Journal of Production Research, 36(6), 1715–1731.CrossRefGoogle Scholar
  13. Okabe, T., Jin, Y., & Sendhoff, B. (2003). A critical survey of performance indices for multi-objective optimisation. In IEEE, The 2003 Congress on Evolutionary Computation (Vol. 2, pp. 878–885).Google Scholar
  14. Park, B. C. (2006). Performance of automated storage/retrieval systems with non-square-in-time racks and two-class storage. International Journal of Production Research, 44(6), 1107–1123.CrossRefGoogle Scholar
  15. Van den Berg, J. P., & Gademann, A. J. R. M. (1999). Optimal routing in an automated storage/retrieval system with dedicated storage. IIE Transactions, 31(5), 407–415.CrossRefGoogle Scholar
  16. Van den Berg, J. P., & Gademann, A. J. R. M. (2000). Simulation study of an automated storage/retrieval system. International Journal of Production Research, 38, 1339–1356.CrossRefGoogle Scholar
  17. Vis, I. F. A., & Carlo, H. J. (2010). Sequencing two cooperating automated stacking cranes in a container terminal. Transportation Science, 44(44), 169–182.CrossRefGoogle Scholar
  18. Vis, I. F. A., & Roodbergen, K. J. (2009). Scheduling of container storage and retrieval. Operations Research, 57(2), 456–467.CrossRefGoogle Scholar
  19. Yu, Y. G., & De Koster, R. B. M. (2009). Designing an optimal turnover-based storage rack for a 3D compact automated storage and retrieval system. International Journal of Production Research, 47(6), 1551–1571.CrossRefGoogle Scholar
  20. Yu, Y. G., & De Koster, R. B. M. (2012). Sequencing heuristics for storing and retrieving unit loads in 3D compact automated warehousing systems. IIE Transactions, 44(2), 69–87.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Glorious Sun School of Business and ManagementDonghua UniversityShanghaiChina
  2. 2.School of Economics and ManagementFuzhou UniversityFuzhouChina
  3. 3.Univ Évry, University of Paris-SaclayÉvryFrance
  4. 4.School of Economics and ManagementTongji UniversityShanghaiChina

Personalised recommendations