Advertisement

SMAA methods and their applications: a literature review and future research directions

  • R. PelissariEmail author
  • M. C. Oliveira
  • S. Ben Amor
  • A. Kandakoglu
  • A. L. Helleno
S.I.: MCDM 2017
  • 51 Downloads

Abstract

Stochastic multicriteria acceptability analysis (SMAA) is a family of multiple criteria decision making (MCDM) methods dealing with incomplete, imprecise, and uncertain information on the evaluations and preference model parameters. As it provides a general framework that has extensions to deal with various specificities in MCDM problems, the development of SMAA methods and their applications in real-life decision-making problems have been increased over the recent years. This paper provides an up-to-date literature review of different SMAA methods and their applications in various areas. First, we selected, from different on-line data base, 118 articles published between 1998 and 2017. We categorized the selected papers into theoretical and applied. While the theoretical papers were analyzed based on the method’s aggregation procedure, type of problem, type of method’s outputs and inputs, the applied papers were separated and analyzed by application areas. Then, we provide some descriptive statistics, analyzing the papers regarding to publication year and journals of publication. Finally, we provide some guidelines to assist decision-makers in the choice of a SMAA method on a specific decision-making context and some future research directions.

Keywords

Uncertainty Imprecision Multiple criteria decision making (MCDM) Stochastic multicriteria acceptability analysis (SMAA) Simulation 

Notes

Acknowledgements

This research was supported by CAPES, the Brazilian Government Agency that supports Higher Education Personnel seeking to enhance their academic qualifications.

References

  1. Aertsen, W., Kint, V., Orshoven, J. V., & Muys, B. (2011). Evaluation of modelling techniques for forest site productivity prediction in contrasting ecoregions using stochastic multicriteria acceptability analysis (SMAA). Environmental Modelling & Software, 26(7), 929–937.CrossRefGoogle Scholar
  2. Alvarez-Guerra, M., Canis, L., Voulvoulis, N., Viguri, J. R., & Linkov, I. (2010). Prioritization of sediment management alternatives using stochastic multicriteria acceptability analysis. Science of the Total Environment, 408(20), 4354–4367.CrossRefGoogle Scholar
  3. Angilella, S., & Mazzù, S. (2015). The financing of innovative SMEs: A multicriteria credit rating model. European Journal of Operational Research, 244(2), 540–554.CrossRefGoogle Scholar
  4. Angilella, S., Corrente, S., & Greco, S. (2012). SMAA-Choquet: Stochastic multicriteria acceptability analysis for the choquet integral. In S. Greco, B. Bouchon-Meunier, G. Coletti, M. Fedrizzi, R. Matarazzo, & R. Yager (Eds.), Advances in computational intelligence (pp. 248–257). Berlin: Springer.CrossRefGoogle Scholar
  5. Angilella, S., Corrente, S., & Greco, S. (2015). Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem. European Journal of Operational Research, 240(1), 172–182.CrossRefGoogle Scholar
  6. Angilella, S., Corrente, S., Greco, S., & Słowiński, R. (2016). Robust ordinal regression and stochastic multiobjective acceptability analysis in multiple criteria hierarchy process for the Choquet integral preference model. Omega, 63, 154–169.CrossRefGoogle Scholar
  7. Angilella, S., Catalfo, P., Corrente, S., Giarlotta, A., Greco, S., & Rizzo, M. (2018). Robust sustainable development assessment with composite indices aggregating interacting dimensions: The hierarchical-SMAA-Choquet integral approach. Knowledge-Based Systems, 158, 136–153.CrossRefGoogle Scholar
  8. Ar, E., Özköse, H., & Gencer, C. (2016). Ranking Turkish cities and regions for air quality using a multi-criteria decision-making method. Polish Journal of Environmental Studies, 25(5), 1823–1830.CrossRefGoogle Scholar
  9. Arcidiacono, S., Corrente, S., & Greco, S. (2018). GAIA-SMAA-PROMETHEE for a hierarchy of interacting criteria. European Journal of Operational Research, 270(2), 606–624.CrossRefGoogle Scholar
  10. Aydogan, E. K., & Ozmen, M. (2017). The stochastic VIKOR method and its use in reverse logistic option selection problem. RAIRO-Operational Research, 51, 375–389.CrossRefGoogle Scholar
  11. Babalos, V., Philippas, N., Doumpos, M., & Zopounidis, C. (2012). Mutual funds performance appraisal using stochastic multicriteria acceptability analysis. Applied Mathematics and Computation, 218(9), 5693–5703.CrossRefGoogle Scholar
  12. Bana e Costa, C. A. (1986). A multicriteria decision aid methodology to deal with conflicting situations on the weights. European Journal of Operational Research, 26(1), 22–34.CrossRefGoogle Scholar
  13. Bana e Costa, C. A. (1988). A methodology for sensitivity analysis in three-criteria problems: A case study in municipal management. European Journal of Operational Research, 33(2), 159–173.CrossRefGoogle Scholar
  14. Behzadian, M., Kazemzadeh, R., Albadvi, A., & Aghdasi, M. (2010). PROMETHEE: A comprehensive literature review on methodologies and applications. European Journal of Operational Research, 200(1), 198–215.CrossRefGoogle Scholar
  15. Ben Amor, S., Martel, J. M., & Guitouni, A. (2015). A synthesis of information imperfection representations for decision aid. Information Systems and Operational Research, 53(2), 68–77.CrossRefGoogle Scholar
  16. Boggia, A., & Rocchi, L. (2010). Water use scenarios assessment using multicriteria analysis. Journal of Multi-Criteria Decision Analysis, 17(5–6), 125–135.CrossRefGoogle Scholar
  17. Brans, J., Vincke, P., & Mareschal, B. (1986). How to select and how to rank projects: The PROMETHEE method. European Journal of Operational Research, 24(2), 228–238.CrossRefGoogle Scholar
  18. Butler, J., Jia, J., & Dyer, J. (1997). Simulation techniques for the sensitivity analysis of multi-criteria decision models. European Journal of Operational Research, 103(3), 531–546.CrossRefGoogle Scholar
  19. Cailloux, O., Tervonen, T., Verhaegen, B., & Picalausa, F. (2014). A data model for algorithmic multiple criteria decision analysis. Annals of Operations Research, 217(1), 123.CrossRefGoogle Scholar
  20. Campos, A. C. S. M., Mareschal, B., & de Almeida, A. T. (2015). Fuzzy-FlowSort: An integration of the FlowSort method and fuzzy set theory for decision making on the basis of inaccurate quantitative data. Information Sciences, 293, 115–124.CrossRefGoogle Scholar
  21. Can, G. F., Kurtulmusoglu, F. B., & Atalay, K. D. (2016). A case study on shopping malls attributes for young consumers. Young Consumers, 17(3), 274–292.CrossRefGoogle Scholar
  22. Charnes, A., Cooper, W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.CrossRefGoogle Scholar
  23. Charnetski, J. R., & Soland, R. M. (1978). Multiple-attribute decision making with partial information: The comparative hypervolume criterion. Naval Research Logistics Quarterly, 25(2), 279–288.CrossRefGoogle Scholar
  24. Cinelli, M., Coles, S., Nadagouda, M., Błaszczyński, J., Słowiński, R., Varma, R., et al. (2017). Robustness analysis of a green chemistry-based model for the classification of silver nanoparticles synthesis processes. Journal of Cleaner Production, 162, 938–948.CrossRefGoogle Scholar
  25. Corrente, S., Figueira, J. R., & Greco, S. (2014). The SMAA-PROMETHEE method. European Journal of Operational Research, 239, 514–522.CrossRefGoogle Scholar
  26. Corrente, S., Figueira, J. R., Greco, S., & Słowiński, R. (2017). A robust ranking method extending ELECTRE III to hierarchy of interacting criteria, imprecise weights and stochastic analysis. Omega (United Kingdom), 73, 1–17.Google Scholar
  27. De Graaf, G., Postmus, D., Buskens, E. (2015). Using multicriteria decision analysis to support research priority setting in biomedical translational research projects. BioMed Research International, 12, 1–9.Google Scholar
  28. Dias, L., Passeira, C., Malça, J., & Freire, F. (2016). Integrating life-cycle assessment and multi-criteria decision analysis to compare alternative biodiesel chains. Annals of Operations Research,  https://doi.org/10.1007/s10479-016-2329-7.
  29. Dias, L., Antunes, C., Dantas, G., de Castro, N., & Zamboni, L. (2018). A multi-criteria approach to sort and rank policies based on Delphi qualitative assessments and ELECTRE TRI: The case of smart grids in Brazil. Omega, 76, 100–111.CrossRefGoogle Scholar
  30. Ding, Y., Fu, Y., Lai, K., & John Leung, W. (2017). Using ranked weights and acceptability analysis to construct composite indicators: A case study of regional sustainable society index. Social Indicators Research, 139(3), 871–885.CrossRefGoogle Scholar
  31. Dogliotti, A., & Giugliano, R. (2015). A novel approach indirectly comparing benefit-risk balance across anti-thrombotic therapies in patients with atrial fibrillation. European Heart Journal-Cardiovascular Pharmacotherapy, 1(1), 15–28.  https://doi.org/10.1093/ehjcvp/pvu007.CrossRefGoogle Scholar
  32. Durbach, I. (2006). A simulation-based test of stochastic multicriteria acceptability analysis using achievement functions. European Journal of Operational Research, 170(3), 923–934.CrossRefGoogle Scholar
  33. Durbach, I. (2009a). On the estimation of a satisficing model of choice using stochastic multicriteria acceptability analysis. Omega, 37(3), 497–509.CrossRefGoogle Scholar
  34. Durbach, I., Lahdelma, R., & Salminen, P. (2014). The analytic hierarchy process with stochastic judgements. European Journal of Operational Research, 238(2), 552–559.CrossRefGoogle Scholar
  35. Durbach, I. I. N., & Calder, J. J. M. (2016). Modelling uncertainty in stochastic multicriteria acceptability analysis. Omega, 64, 13–23.CrossRefGoogle Scholar
  36. Durbach, I. N. (2009b). The use of the SMAA acceptability index in descriptive decision analysis. European Journal of Operational Research, 196(3), 1229–1237.CrossRefGoogle Scholar
  37. Eroglu, O., & Gencer, C. (2017). Integrating fuzzy dematel and smaa-2 for maintenance expenses. International Journal of Engineering Science Invention, 6(1), 2319–6726.Google Scholar
  38. Fazlollahtabar, H., & Aghasi, E. (2014). An integrated stochastic multi-criteria acceptability analysis and mathematical optimisation for service marketing. International Journal of Services and Operations Management, 17(1).Google Scholar
  39. Félix, A., Baquerizo, A., Santiago, J., & Losada, M. (2012). Coastal zone management with stochastic multi-criteria analysis. Journal of Environmental Management, 112, 252–266.CrossRefGoogle Scholar
  40. García-Morales, R., Baquerizo, A., & Losada, M. (2015). Port management and multiple-criteria decision making under uncertainty. Ocean Engineering, 104, 31–39.CrossRefGoogle Scholar
  41. González-Neira, E. M., García-Cáceres, R. G., Caballero-Villalobos, J. P., Molina-Sánchez, L. P., & Montoya-Torres, J. R. (2016). Stochastic flexible flow shop scheduling problem under quantitative and qualitative decision criteria. Computers & Industrial Engineering, 101, 128–144.CrossRefGoogle Scholar
  42. Govindan, K., & Jepsen, M. B. (2016). ELECTRE: A comprehensive literature review on methodologies and applications. European Journal of Operational Research, 250(1), 1–29.CrossRefGoogle Scholar
  43. Govindan, K., Kadziński, M., Ehling, R., Miebs G. (2018). Selection of a sustainable third-party reverse logistics provider based on the robustness analysis of an outranking graph kernel conducted with ELECTRE I and SMAA. Omega (United Kingdom).  https://doi.org/10.1016/j.omega.2018.05.007.
  44. Greco, S., Ishizaka, A., Matarazzo, B., & Torrisi, G. (2018). Stochastic multi-attribute acceptability analysis (SMAA): An application to the ranking of Italian regions. Regional Studies, 52(4), 585–600.CrossRefGoogle Scholar
  45. Hallgreen, C., van den Ham, H., Mt-Isa, S., Ashworth, S., Hermann, R., Hobbiger, S., et al. (2014). Benefit-risk assessment in a post-market setting: A case study integrating real-life experience into benefit-risk methodology. Pharmacoepidemiology and Drug Safety, 23(9), 974–983.CrossRefGoogle Scholar
  46. Hokkanen, J., Lahdelma, R., Miettinen, K., & Salminen, P. (1998). Determining the implementation order of a general plan by using a multicriteria method. Journal of Multi-Criteria Decision Analysis, 7, 273284.CrossRefGoogle Scholar
  47. Hokkanen, J., Lahdelma, R., & Salminen, P. (1999). A multiple criteria decision model for analyzing and choosing among different development patterns for the Helsinki cargo harbor. Socio-Economic Planning Sciences, 33(1), 1–23.CrossRefGoogle Scholar
  48. Hokkanen, J., Lahdelma, R., & Salminen, P. (2000). Multicriteria decision support in a technology competition for cleaning polluted soil in Helsinki. Journal of Environmental Management, 60(4), 339–348.CrossRefGoogle Scholar
  49. Hu, X., Cheng, J., Luo, H. (2015). Task assignment for multi-UAV under severe uncertainty by using stochastic multicriteria acceptability analysis. Mathematical Problems in Engineering.  https://doi.org/10.1155/2015/249825.CrossRefGoogle Scholar
  50. Hubinont, J.-P. (2016). SMAA-GAIA: a complementary tool of the SMAA-PROMETHEE method. International Journal of Multi-criteria Decision Making, 6(3), 237–246.CrossRefGoogle Scholar
  51. Jung, N., Moula, M. E., Fang, T., Hamdy, M., & Lahdelma, R. (2016). Social acceptance of renewable energy technologies for buildings in the Helsinki metropolitan area of Finland. Renewable Energy, 99, 813–824.CrossRefGoogle Scholar
  52. Kadziński, M., & Tervonen, T. (2013a). Stochastic ordinal regression for multiple criteria sorting problems. Decision Support Systems, 55(1), 55–66.CrossRefGoogle Scholar
  53. Kadziński, M., & Tervonen, T. (2013b). Robust multi-criteria ranking with additive value models and holistic pair-wise preference statements. European Journal of Operational Research, 228(1), 169–180.CrossRefGoogle Scholar
  54. Kadziński, M., Labijak, A., & Napieraj, M. (2017). Integrated framework for robustness analysis using ratio-based efficiency model with application to evaluation of Polish airports. Omega, 67, 1–18.CrossRefGoogle Scholar
  55. Kangas, A. (2006). The risk of decision making with incomplete criteria weight information. Canadian Journal of Forest Research, 36(1), 195–205.CrossRefGoogle Scholar
  56. Kangas, A. S., Kangas, J., Lahdelma, R., & Salminen, P. (2006). Using SMAA-2 method with dependent uncertainties for strategic forest planning. Forest Policy and Economics, 9(2), 113–125.CrossRefGoogle Scholar
  57. Kangas, J., & Kangas, A. (2003). Multicriteria approval and SMAA-O in natural resources decision analysis with both ordinal and cardinal criteria. Journal of Multi-Criteria Decision Analysis, 12(1), 3–15.CrossRefGoogle Scholar
  58. Kangas, J., Hokkanen, J., Kangas, A. S., Lahdelma, R., & Salminen, P. (2003a). Applying stochastic multicriteria acceptability analysis to forest ecosystem management with both cardinal and ordinal criteria. Forest Science, 6(6), 928–937.Google Scholar
  59. Kangas, J., Kurttila, M., Kajanus, M., & Kangas, A. (2003b). Evaluating the management strategies of a forestland estatethe S-O-S approach. Journal of Environmental Management, 69(4), 349–358.CrossRefGoogle Scholar
  60. Kangas, J., Store, R., & Kangas, A. (2005). Socioecological landscape planning approach and multicriteria acceptability analysis in multiple-purpose forest management. Forest Policy and Economics, 7(4), 603–614.CrossRefGoogle Scholar
  61. Karabay, S., Köse, E., Kabak, M., & Ozceylan, E. (2016). Mathematical model and stochastic multi-criteria acceptability analysis for facility location problem. Promet Traffic & Transportation, 28(3), 245–256.CrossRefGoogle Scholar
  62. Keeney, L., & Raiffa, H. (1976). Decisions with multiple objectives: Preferences and value trade-offs. New York: Wiley.Google Scholar
  63. Kirppu, H., Lahdelma, R., & Salminen, P. (2018). Multicriteria evaluation of carbon-neutral heat-only production technologies for district heating. Applied Thermal Engineering, 130, 466–476.CrossRefGoogle Scholar
  64. Kontu, K., Rinne, S., Olkkonen, V., Lahdelma, R., & Salminen, P. (2015). Multicriteria evaluation of heating choices for a new sustainable residential area. Energy and Buildings, 93, 169–179.CrossRefGoogle Scholar
  65. Kurtulmuolu, F. B., Can, G. F., & Tolon, M. (2016). A voice in the skies: Listening to airline passenger preferences. Journal of Air Transport Management, 57, 130–137.CrossRefGoogle Scholar
  66. Lahdelma, R., & Salminen, P. (2001). SMAA-2: Stochastic multicriteria acceptability analysis for group decision making. Operations Research, 49(3), 444–454.CrossRefGoogle Scholar
  67. Lahdelma, R., & Salminen, P. (2002). Pseudo-criteria versus linear utility function in stochastic multi-criteria acceptability analysis. European Journal of Operational Research, 141(2), 454–469.CrossRefGoogle Scholar
  68. Lahdelma, R., & Salminen, P. (2006a). Classifying efficient alternatives in SMAA using cross confidence factors. European Journal of Operational Research, 170(1), 228–240.CrossRefGoogle Scholar
  69. Lahdelma, R., & Salminen, P. (2006b). Stochastic multicriteria acceptability analysis using the data envelopment model. European Journal of Operational Research, 170(1), 241–252.CrossRefGoogle Scholar
  70. Lahdelma, R., & Salminen, P. (2009). Prospect theory and stochastic multicriteria acceptability analysis (SMAA). Omega, 37(5), 961–971.CrossRefGoogle Scholar
  71. Lahdelma, R., & Salminen, P. (2010a). A method for ordinal classification in multicriteria decision making. International Conference on Artificial Intelligence and Applications, 674, 420–425.Google Scholar
  72. Lahdelma, R., & Salminen, P. (2010b). Stochastic multicriteria acceptability analysis (SMAA). In S. Greco, M. Ehrgott, & J. R. Figueira (Eds.), Trends in Multiple Criteria Decision Analysis (pp. 285–315). New York: Springer.CrossRefGoogle Scholar
  73. Lahdelma, R., & Salminen, P. (2012). The shape of the utility or value function in stochastic multicriteria acceptability analysis. OR Spectrum, 34(4), 785802.CrossRefGoogle Scholar
  74. Lahdelma, R., & Salminen, P. (2016). SMAA in robustness analysis. In Robustness analysis in decision aiding, optimization, and analytics (pp. 1–20). Berlin: Springer.Google Scholar
  75. Lahdelma, R., Hokkanen, J., & Salminen, P. (1998). SMAA-Stochastic multiobjective acceptability analysis. European Journal of Operational Research, 106(1), 137–143.CrossRefGoogle Scholar
  76. Lahdelma, R., Salminen, P., & Hokkanen, J. (2002). Locating a waste treatment facility by using stochastic multicriteria acceptability analysis with ordinal criteria. European Journal of Operational Research, 142(2), 345–356.CrossRefGoogle Scholar
  77. Lahdelma, R., Miettinen, K., & Salminen, P. (2003). Ordinal criteria in stochastic multicriteria acceptability analysis (SMAA). European Journal of Operational Research, 147(1), 117127.CrossRefGoogle Scholar
  78. Lahdelma, R., Miettinen, K., Salminen, P., Tervonen, T. (2004). Computational methods for stochastic multicriteria acceptability analysis. In European congress on computational methods in applied sciences and engineering.Google Scholar
  79. Lahdelma, R., Miettinen, K., & Salminen, P. (2005). Reference point approach for multiple decision makers. European Journal of Operational Research, 164(3), 785–791.CrossRefGoogle Scholar
  80. Lahdelma, R., Makkonen, S., & Salminen, P. (2006). Multivariate Gaussian criteria in SMAA. European Journal of Operational Research, 170(3), 957–970.CrossRefGoogle Scholar
  81. Lahdelma, R., Makkonen, S., & Salminen, P. (2009). Two ways to handle dependent uncertainties in multi-criteria decision problems. Omega, 37(1), 79–92.CrossRefGoogle Scholar
  82. Li, K., Yuan, S., Wang, W., Wan, S., Ceesay, P., Heyse, J., et al. (2018). Periodic benefit-risk assessment using Bayesian stochastic multi-criteria acceptability analysis. Contemporary Clinical Trials, 67, 100–108.  https://doi.org/10.1016/j.cct.2018.02.016.CrossRefGoogle Scholar
  83. Li, Z., Wu, X., Liu, F., Fu, Y., & Chen, K. (2017). Multicriteria ABC inventory classification using acceptability analysis. International Transactions in Operational Research.  https://doi.org/10.1111/itor.12412.
  84. Linhoss, A. C., Kiker, G. A., Aiello-Lammens, M. E., Chu-Agor, M. L., Convertino, M., Muñoz-Carpena, R., et al. (2013). Decision analysis for species preservation under sea-level rise. Ecological Modelling, 263, 264–272.CrossRefGoogle Scholar
  85. Liu, J., Liao, X., Huang, W., & Liao X. (2018). Market segmentation: A multiple criteria approach combining preference analysis and segmentation decision. Omega (United Kingdom).  https://doi.org/10.1016/j.omega.2018.01.008.
  86. Loikkanen, O., Lahdelma, R., & Salminen, P. (2017). Multicriteria evaluation of sustainable energy solutions for colosseum. Sustainable Cities and Society, 35, 289–297.CrossRefGoogle Scholar
  87. Mardani, A., Jusoh, A., Nor, K. M., Khalifah, Z., Zakwan, N., & Valipour, A. (2015a). Multiple criteria decision-making techniques and their applications a review of the literature from 2000 to 2014. Economic Research-Ekonomska Istraivanja, 28(1), 516–571.CrossRefGoogle Scholar
  88. Mardani, A., Jusoh, A., & Zavadskas, E. K. (2015b). Fuzzy multiple criteria decision-making techniques and applications two decades review from 1994 to 2014. Expert Systems with Applications, 42(8), 4126–4148.CrossRefGoogle Scholar
  89. Mendecka, B., Lombardi, L., & Kozioł, J. (2016). Probabilistic multi-criteria analysis for evaluation of biodiesel production technologies from used cooking oil. Renewable Energy.  https://doi.org/10.1016/j.renene.2017.05.037.
  90. Menou, A., Benallou, A., Lahdelma, R., & Salminen, P. (2010). Decision support for centralizing cargo at a Moroccan airport hub using stochastic multicriteria acceptability analysis. European Journal of Operational Research, 204(3), 621–629.CrossRefGoogle Scholar
  91. Okul, D., Gencer, C., & Aydogan, E. (2014). A method based on SMAA-Topsis for stochastic multi-criteria decision making and a real-world application. International Journal of Information Technology and Decision Making, 13(5), 957–978.CrossRefGoogle Scholar
  92. Pesola, A., Serkkola, A., Lahdelma, R., & Salminen, P. (2014). Multicriteria evaluation of alternatives for remote monitoring systems of municipal buildings. Energy and Buildings, 72, 229–237.CrossRefGoogle Scholar
  93. Postmus, D., Tervonen, T., Van Valkenhoef, G., Hillege, H., & Buskens, E. (2014). A multi-criteria decision analysis perspective on the health economic evaluation of medical interventions. European Journal of Health Economics, 15(7), 709–716.CrossRefGoogle Scholar
  94. Prado-Lopez, V., Seager, T., Chester, M., Laurin, L., Bernardo, M., & Tylock, S. (2014). Stochastic multi-attribute analysis (SMAA) as an interpretation method for comparative life-cycle assessment (LCA). International Journal of Life Cycle Assessment, 19(2), 405–416.CrossRefGoogle Scholar
  95. Cáceres, Rafael Guillermo García, Aráoz Durand, J. A., & Gómez, F. P. (2009). Integral analysis method IAM. European Journal of Operational Research, 192(3), 891–903.CrossRefGoogle Scholar
  96. Rahman, M. M. M., Paatero, J. J. V., & Lahdelma, R. (2013). Evaluation of choices for sustainable rural electrification in developing countries: A multicriteria approach. Energy Policy, 59, 589–599.CrossRefGoogle Scholar
  97. Rahman, M. M. M., Paatero, J. J. V., Lahdelma, R., Wahid, M. A., & Wahid, M. (2016). Multicriteria-based decision aiding technique for assessing energy policy elements—demonstration to a case in Bangladesh. Applied Energy, 164, 237–244.CrossRefGoogle Scholar
  98. Rajagopalan, N., Venditti, R., Kelley, S., & Daystar, J. (2017). Multi-attribute uncertainty analysis of the life cycle of lignocellulosic feedstock for biofuel production. Biofuels, Bioproducts and Biorefining, 11(2), 269–280.CrossRefGoogle Scholar
  99. Rocchi, L. (2012). Using stochastic multi-criteria acceptability analysis methods in SEA: An application to the Park of Trasimeno (Italy). Journal of Environmental Planning and Management, 55(2), 177–189.CrossRefGoogle Scholar
  100. Roy, B. (1978). Electre iii : Un algorithme de classements fond sur une reprsentation floue des prfrences en prsence de critres multiples. Cahiers du CERO, 20(1), 324.Google Scholar
  101. Roy, B. (1991). The outranking approach and the foundations of electre methods. Theory and Decision, 31, 49–73.CrossRefGoogle Scholar
  102. Saaty, T. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 24(6), 19–43.Google Scholar
  103. Saint-Hilary, G., Cadour, S., Robert, V., & Gasparini, M. (2017). A simple way to unify multicriteria decision analysis (MCDA) and stochastic multicriteria acceptability analysis (SMAA) using a Dirichlet distribution in benefitrisk assessment. Biometrical Journal, 59(3), 567–578.CrossRefGoogle Scholar
  104. Scheffler, A., Roth, T., & Ahlf, W. (2014). Sustainable decision making under uncertainty: A case study in dredged material management. Environmental Sciences Europe, 26(1), 7.CrossRefGoogle Scholar
  105. Soheilirad, S., Govindan, K., Mardani, A., Zavadskas, E. K., Nilashi, M., & Zakuan, N. (2017). Application of data envelopment analysis models in supply chain management: A systematic review and meta-analysis. Annals of Operations Research, 271(2), 915–969.  https://doi.org/10.1007/s10479-017-2605-1.CrossRefGoogle Scholar
  106. Song, L., Fu, Y., Zhou, P., & Lai, K. (2017). Measuring national energy performance via energy trilemma index: A stochastic multicriteria acceptability analysis. Energy Economics, 66, 313–319.CrossRefGoogle Scholar
  107. Stewart, T. J. (2005). Dealing with uncertainties in MCDA (pp. 445–466). New York: Springer.  https://doi.org/10.1007/0-387-23081-5_11.CrossRefGoogle Scholar
  108. Tervonen, T. (2014). JSMAA: Open source software for SMAA computations. International Journal of Systems Science, 45(1), 69–81.CrossRefGoogle Scholar
  109. Tervonen, T., & Figueira, J. (2008). A survey on stochastic multicriteria acceptability analysis methods. Journal of Multi-criteria Decision Analysis, 407, 1–14.CrossRefGoogle Scholar
  110. Tervonen, T., & Lahdelma, R. (2007). Implementing stochastic multicriteria acceptability analysis. European Journal of Operational Research, 178(2), 500–513.CrossRefGoogle Scholar
  111. Tervonen, T., Hakonen, H., & Lahdelma, R. (2008). Elevator planning with stochastic multicriteria acceptability analysis. Omega, 36(3), 352–362.CrossRefGoogle Scholar
  112. Tervonen, T., Figueira, J. R. J., Lahdelma, R., Dias, J. A. J., & Salminen, P. (2009a). A stochastic method for robustness analysis in sorting problems. European Journal of Operational Research, 192(1), 236–242.CrossRefGoogle Scholar
  113. Tervonen, T., Linkov, I., Figueira, J. R., Steevens, J., Chappell, M., & Merad, M. (2009b). Risk-based classification system of nanomaterials. Journal of Nanoparticle Research, 11(4), 757–766.CrossRefGoogle Scholar
  114. Tervonen, T., van Valkenhoef, G., Buskens, E., Hillege, H., & Postmus, D. (2011). A stochastic multicriteria model for evidence-based decision making in drug benefit-risk analysis. Statistics in Medicine, 30(12), 1419–1428.CrossRefGoogle Scholar
  115. Tervonen, T., Van Valkenhoef, G., Batürk, N., & Postmus, D. (2013). Hit-and-run enables efficient weight generation for simulation-based multiple criteria decision analysis. European Journal of Operational Research, 224(3), 552–559.CrossRefGoogle Scholar
  116. Tonin, F., Steimbach, L., Borba, H., Sanches, A., Wiens, A., Pontarolo, R., et al. (2017). Efficacy and safety of amphotericin B formulations: A network meta-analysis and a multicriteria decision analysis. Journal of Pharmacy and Pharmacology, 69(12), 1672–1683.CrossRefGoogle Scholar
  117. Tylock, S. M., Seager, T. P., Snell, J., Bennett, E. R., & Sweet, D. (2012). Energy management under policy and technology uncertainty. Energy Policy, 47, 156–163.CrossRefGoogle Scholar
  118. Van Valkenhoef, G., Tervonen, T., Zhao, J., De Brock, B., Hillege, H., & Postmus, D. (2012). Multicriteria benefit-risk assessment using network meta-analysis. Journal of Clinical Epidemiology, 65(4), 394–403.CrossRefGoogle Scholar
  119. van Valkenhoef, G., Tervonen, T., Zwinkels, T., de Brock, B., & Hillege, H. (2013). ADDIS: A decision support system for evidence-based medicine. Decision Support Systems, 55(2), 459–475.CrossRefGoogle Scholar
  120. Vetschera, R. (2016). Deriving rankings from incomplete preference information: A comparison of different approaches. European Journal of Operational Research, 258(1), 244–253.CrossRefGoogle Scholar
  121. Vishnupriyan, J., & Manoharan, P. (2018). Multi-criteria decision analysis for renewable energy integration: A southern India focus. Renewable Energy, 121, 474–488.CrossRefGoogle Scholar
  122. Wang, G., Jia, N., Ma, S., & Qi, H. (2014). A rank-dependent bi-criterion equilibrium model for stochastic transportation environment. European Journal of Operational Research, 235(3), 511–529.CrossRefGoogle Scholar
  123. Wang, H., Jiao, W., Lahdelma, R., Zhu, C., & Zou, P. (2015). Stochastic multicriteria acceptability analysis for evaluation of combined heat and power units. Energies, 8(1), 59–78.CrossRefGoogle Scholar
  124. Wang, H., Duanmu, L., Lahdelma, R., & Li, X. (2017). Developing a multicriteria decision support framework for chp based combined district heating systems. Applied Energy, 205, 345–368.CrossRefGoogle Scholar
  125. Wang, H., Lahdelma, R., Salminen, P. (2018). Stochastic multicriteria evaluation of district heating systems considering the uncertainties. Science and Technology for the Built Environment, 1–9.  https://doi.org/10.1080/23744731.2018.1457399.
  126. Wang, J. (2015). PRM25 stochastic multicriteria acceptability analysis in a Bayesian framework. Value in Health, 18(7), A686–A687.CrossRefGoogle Scholar
  127. Wang, W., Liu, C., Zhou, W., Xia, T., Xie, H., & Wang, S. (2016). Network meta-analysis of the effectiveness of neoadjuvant endocrine therapy for postmenopausal, HR-positive breast cancer. Scientific Reports, 6, 25615.  https://doi.org/10.1038/srep25615.CrossRefGoogle Scholar
  128. Xia, M. (2015). Stochastic multicriteria acceptability analysis based on choquet integral. Journal of Applied Mathematics.  https://doi.org/10.1155/2015/315340.
  129. Yang, F., Ang, S., Xia, Q., & Yang, C. (2012). Ranking DMUs by using interval DEA cross efficiency matrix with acceptability analysis. European Journal of Operational Research, 223(2), 483–488.CrossRefGoogle Scholar
  130. Yang, F., Song, S., Huang, W., & Xia, Q. (2014). SMAA-PO: Project portfolio optimization problems based on stochastic multicriteria acceptability analysis. Annals of Operations Research, 233(1), 535–547.CrossRefGoogle Scholar
  131. Yang, Y., & Wang, J.-Q. (2018). SMAA-based model for decision aiding using regret theory in discrete Z-number context. Applied Soft Computing, 65, 590–602.CrossRefGoogle Scholar
  132. Yu, W. (1992). ELECTRE TRI—Aspects mthodologiques et guide d’utilisation. In Document du LAMSADE (p. 74). France: Université Paris Dauphine.Google Scholar
  133. Yu, Y., Zhu, W., & Zhang Q. (2017). DEA cross-efficiency evaluation and ranking method based on interval data. Annals of Operations Research, 1–17.  https://doi.org/10.1007/s10479-017-2669-y.
  134. Yuan, Q., Song, S., & Yang, F. (2016). Advertising for price-sensitive products with multi-attribute considered. International Journal of Production Research, 54(13), 3796–3807.CrossRefGoogle Scholar
  135. Zhang, W., Ju, Y., & Gomes, L. F. A. M. (2017). The SMAA-TODIM approach: Modeling of preferences and a robustness analysis framework. Computers & Industrial Engineering, 114, 130–141.CrossRefGoogle Scholar
  136. Zheng, J., Egger, C., & Lienert, J. (2016). A scenario-based MCDA framework for wastewater infrastructure planning under uncertainty. Journal of Environmental Management, 183(3), 895–908.CrossRefGoogle Scholar
  137. Zhou, H., Wang, J.-q., & Zhang H.-y. (2017). Stochastic multicriteria decision-making approach based on SMAA-ELECTRE with extended gray numbers. International Transactions in Operational Research.  https://doi.org/10.1111/itor.12380.
  138. Zhu, F., Zhong, P.-A., Wu, Y.-N., Sun, Y., Chen, J., & Jia, B. (2017). SMAA-based stochastic multi-criteria decision making for reservoir flood control operation. Stochastic Environmental Research and Risk Assessment, 31(6), 1485–1497.CrossRefGoogle Scholar
  139. Zhu, F., Zhong, P.-A., & Sun, Y. (2018). Multi-criteria group decision making under uncertainty: Application in reservoir flood control operation. Environmental Modelling and Software, 100, 236–251.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Industrial EngineeringUNIMEPSanta Bárbara d’OesteBrazil
  2. 2.Telfer School of ManagementUniversity of OttawaOttawaCanada
  3. 3.Engineering SchoolMackenzie Presbyterian UniversitySão PauloBrazil

Personalised recommendations