Enhanced indexing using weighted conditional value at risk

  • Ruchika SehgalEmail author
  • Aparna Mehra
Original Research


We propose an enhanced indexing portfolio optimization model that not only seeks to maximize the excess returns over and above the benchmark index but simultaneously control the risk by introducing a constraint on the weighted conditional value at risk (WCVaR) of the portfolio. The constraint in the proposed model can be seen as hedging the risk described by WCVaR of the portfolio. To carry out a comparative analysis of the proposed model, we also suggest an enhanced indexing CVaR model. We analyze the performance of the proposed model at various risk levels on eight publicly available financial data sets from Beasley OR library, and S&P 500, S&P BSE 500, NASDAQ composite, FTSE 100 index, and their constituents, for average returns, Sharpe ratio, and upside potential ratio. Empirical analysis exhibits superior performance of the portfolios from the proposed WCVaR model over the respective benchmark indices and additionally the optimal portfolios obtained from various other enhanced indexing models that exist in the literature. Furthermore, we present evidence of better performance of WCVaR model over the CVaR model for long-term investment horizons.


Enhanced indexing Conditional value at risk Weighted conditional value at risk Gini mean difference Sharpe ratio Upside potential ratio 



The authors are profoundly thankful to the Editor-in-Chief and the esteemed referees for their valuable comments and suggestions.


  1. Ahmed, P., & Nanda, S. (2005). Performance of enhanced index and quantitative equity funds. Financial Review, 40(4), 459–479.CrossRefGoogle Scholar
  2. Beasley, J. E., Meade, N., & Chang, T. J. (2003). An evolutionary heuristic for the index tracking problem. European Journal of Operational Research, 148(3), 621–643.CrossRefGoogle Scholar
  3. Bruni, R., Cesarone, F., Scozzari, A., & Tardella, F. (2015). A linear risk-return model for enhanced indexation in portfolio optimization. OR Spectrum, 37(3), 735–759.CrossRefGoogle Scholar
  4. Canakgoz, N. A., & Beasley, J. E. (2009). Mixed-integer programming approaches for index tracking and enhanced indexation. European Journal of Operational Research, 196(1), 384–399.CrossRefGoogle Scholar
  5. De Paulo, W. L., De Oliveira, E. M., & Do Valle Costa, O. L. (2016). Enhanced index tracking optimal portfolio selection. Finance Research Letters, 16, 93–102.CrossRefGoogle Scholar
  6. DiBartolomeo, D. (2000). The enhanced index fund as an alternative to indexed equity management. Boston: Northfield information services. Accessed 16 Jan 2019.
  7. Edirisinghe, N. (2013). Index-tracking optimal portfolio selection. Quantitative Finance Letters, 1(1), 16–20.CrossRefGoogle Scholar
  8. Gilli, M., & Këllezi, E. (2002). The threshold accepting heuristic for index tracking. In P. Pardalos & V. K. Tsitsiringos (Eds.), Applied optimization series: Financial engineering, e-commerce and supply chain (pp. 1–18). Boston: Kluwer Academic.Google Scholar
  9. Guastaroba, G., & Speranza, M. G. (2012). Kernel search: An application to the index tracking problem. European Journal of Operational Research, 217(1), 54–68.CrossRefGoogle Scholar
  10. Guastaroba, G., Mansini, R., Ogryczak, W., & Speranza, M. G. (2016a). Linear programming models based on omega ratio for the enhanced index tracking problem. European Journal of Operational Research, 251(3), 938–956.CrossRefGoogle Scholar
  11. Guastaroba, G., Mansini, R., Speranza, M. G., Ogryczak, W. (2016b). Enhanced index tracking with cvar-based measures. Accessed 16 Jan 2019.
  12. Jeurissen, R., & Van den Berg, J. (2005). Index tracking using a hybrid genetic algorithm. In Proceedings of 2005 ICSC congress on computational intelligence methods and applications, Istanbul. 2005.1662364.
  13. Ji, R., Lejeune, M. A., & Prasad, S. Y. (2017). Properties, formulations, and algorithms for portfolio optimization using mean-gini criteria. Annals of Operations Research, 248(1–2), 305–343.CrossRefGoogle Scholar
  14. Keating, C., & Shadwick, W. F. (2002). A universal performance measure. Journal of Performance Measurement, 6(3), 59–84.Google Scholar
  15. Koshizuka, T., Konno, H., & Yamamoto, R. (2009). Index-plus-alpha tracking subject to correlation constraint. International Journal of Optimization: Theory, Methods and Applications, 1(2), 215–224.Google Scholar
  16. Krokhmal, P., Palmquist, J., & Uryasev, S. (2002). Portfolio optimization with conditional value-at-risk objective and constraints. Journal of Risk, 4, 43–68.CrossRefGoogle Scholar
  17. Li, Q., Sun, L., & Bao, L. (2011). Enhanced index tracking based on multi-objective immune algorithm. Expert Systems with Applications, 38(5), 6101–6106.CrossRefGoogle Scholar
  18. Linsmeier, T. J., Pearson, N. D., et al. (1996). Risk measurement: An introduction to value at risk. In Technical report 96-04. OFOR, University of Illinois, Urbana-Champaign.Google Scholar
  19. Lizyayev, A., & Ruszczyński, A. (2012). Tractable almost stochastic dominance. European Journal of Operational Research, 218(2), 448–455.CrossRefGoogle Scholar
  20. Mansini, R., Ogryczak, W., & Speranza, M. G. (2007a). Conditional value at risk and related linear programming models for portfolio optimization. Annals of Operations Research, 152(1), 227–256.Google Scholar
  21. Mansini, R., Ogryczak, W., & Speranza, M. G. (2007b). Tail Gini’s risk measures and related linear programming models for portfolio optimization. In HERCMA conference proceedings, CD, LEA Publishers, Athens.Google Scholar
  22. Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91.Google Scholar
  23. Meade, N., & Beasley, J. E. (2011). Detection of momentum effects using an index out-performance strategy. Quantitative Finance, 11(2), 313–326.CrossRefGoogle Scholar
  24. Ogryczak, W., & Ruszczyński, A. (2002a). Dual stochastic dominance and quantile risk measures. International Transactions in Operational Research, 9(5), 661–680.CrossRefGoogle Scholar
  25. Ogryczak, W., & Ruszczynski, A. (2002b). Dual stochastic dominance and related mean-risk models. SIAM Journal on Optimization, 13(1), 60–78.CrossRefGoogle Scholar
  26. Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, 2, 21–42.CrossRefGoogle Scholar
  27. Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, 26(7), 1443–1471.CrossRefGoogle Scholar
  28. Roll, R. (1992). A mean/variance analysis of tracking error. The Journal of Portfolio Management, 18(4), 13–22.CrossRefGoogle Scholar
  29. Roman, D., Mitra, G., & Zverovich, V. (2013). Enhanced indexation based on second-order stochastic dominance. European Journal of Operational Research, 228(1), 273–281.CrossRefGoogle Scholar
  30. Rudolf, M., Wolter, H. J., & Zimmermann, H. (1999). A linear model for tracking error minimization. Journal of Banking & Finance, 23(1), 85–103.CrossRefGoogle Scholar
  31. Sant’Anna, L. R., Filomena, T. P., & Caldeira, J. F. (2017). Index tracking and enhanced indexing using cointegration and correlation with endogenous portfolio selection. The Quarterly Review of Economics and Finance, 65, 146–157.CrossRefGoogle Scholar
  32. Scowcroft, A., & Sefton, J. (2003). Enhanced indexation. In S. Satchell & A. Scowcroft (Eds.), Advances in portfolio construction and implementation (pp. 95–124). Butterworth-Heinemann Finance.Google Scholar
  33. Sharma, A., Agrawal, S., & Mehra, A. (2017). Enhanced indexing for risk averse investors using relaxed second order stochastic dominance. Optimization and Engineering, 18(2), 407–442.CrossRefGoogle Scholar
  34. Sharpe, W. F. (1994). The sharpe ratio. The Journal of Portfolio Management, 21(1), 49–58.CrossRefGoogle Scholar
  35. Sortino, F. A., Van Der Meer, R., & Plantinga, A. (1999). The dutch triangle. The Journal of Portfolio Management, 26(1), 50–57.CrossRefGoogle Scholar
  36. Wang, M., Xu, C., Xu, F., & Xue, H. (2012). A mixed 0–1 LP for index tracking problem with cvar risk constraints. Annals of Operations Research, 196(1), 591–609.CrossRefGoogle Scholar
  37. Yitzhaki, S. (1982). Stochastic dominance, mean variance, and Gini’s mean difference. The American Economic Review, 72(1), 178–185.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology DelhiHauz Khas, New DelhiIndia

Personalised recommendations