An analysis of the sensitivity and stability of patients’ preferences can lead to more appropriate medical decisions

  • M. Gabriela Sava
  • Luis G. Vargas
  • Jerrold H. May
  • James G. Dolan
S.I.: MCDM 2017


Patients are faced with multiple alternatives when selecting the preferred method for colorectal cancer screening, and there are multiple criteria to be considered in the decision-making process. We model patients’ choices using a multicriteria decision model, specifically an Analytic Hierarchy Process-based model, and propose a new approach for characterizing the idiosyncratic preference regions for individual patients. The new approach involves the development of a personalized sensitivity and stability analysis of preferences that provides pertinent insights about the changes that occur in a patient’s preferences, as he/she learns additional relevant medical information. We show how the insights derived from the sensitivity and stability of patients’ preferences could be used by a healthcare provider within the medical decision-making process.


Multicriteria decision-making Analytic Network Process (ANP) Analytic Hierarchy Process (AHP) Sensitivity and stability analysis Medical decision-making 



We thank the two anonymous reviewers for their helpful comments and suggestions.


  1. Angilella, S., Corrente, S., & Greco, S. (2015). Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem. European Journal of Operational Research, 240, 172–182.CrossRefGoogle Scholar
  2. Bennett, K. P., & Mangasarian, O. L. (1994). Multicategory discrimination via linear programming. Optimization Methods and Software, 3(1–4), 27–39.CrossRefGoogle Scholar
  3. Bredensteiner, E. J., & Bennett, K. P. (1999). Multicategory classification by support vector machines. Computational Optimization and Applications, 12(1), 53–79.Google Scholar
  4. Carter, K. J., Ritchey, N. P., Castro, F., Caccamo, L. P., Kessler, E., & Erickson, B. A. (1999). Analysis of three decision making methods: A breast cancer patient as a model. Medical Decision Making, 19(1), 49–57.CrossRefGoogle Scholar
  5. Corrente, S., Figueira, J. R., & Greco, S. (2014). The SMAA-PROMETHEE method. European Journal of Operational Research, 239, 514–522.CrossRefGoogle Scholar
  6. de Berg, M., Cheong, O., van Kreveld, M., & Overmars, M. (2008). Computational geometry. Algorithm and applications. Berlin: Springer.Google Scholar
  7. Delaunay, B. (1934). Sur la sphère vide. A la mémoire de George Voronoi. Bulletin de l’Académie des Sciences de l’URSS, Classe des sciences mathématique et na, Issue, 6, 793–800.Google Scholar
  8. Dolan, J. G. (1995). Are patients capable of using the Analytic Hierarchy Process and willing to use it to help make clinical decisions? Medical Decision Making, 15(1), 76–80.CrossRefGoogle Scholar
  9. Dolan, J. G., Boohaker, E., Allison, J., & Imperiale, T. F. (2013). Patients’ preferences and priorities regarding colorectal cancer screening. Medical Decision Making, 33(1), 59–70.CrossRefGoogle Scholar
  10. Dolan, J. G., Boohaker, E., Allison, J., & Imperiale, T. F. (2014). Can streamlined multicriteria decision analysis be used to implement shared decision making for colorectal cancer screening? Medical Decision Making, 34(6), 746–755.CrossRefGoogle Scholar
  11. Dolan, J. G., & Frisina, S. (2002). Randomized controlled trial of a patient decision aid for colorectal cancer screening. Medical Decision Making, 22(2), 125–139.CrossRefGoogle Scholar
  12. Dunham, J. G. (1986). Optimum uniform piecewise linear approximation of planar curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(1), 67–75.CrossRefGoogle Scholar
  13. Durbach, I., Lahdelma, R., & Salminen, P. (2014). The analytic hierachy process with stochastic judgements. European Journal of Operational Research, 238, 552–559.CrossRefGoogle Scholar
  14. Edelsbrunner, H. (2001). Geometry and topology for mesh generation. New York: Cambridge University Press.CrossRefGoogle Scholar
  15. Keener, J. P. (1993). The Perron-Frobenius theorem and the ranking of football teams. SIAM Review, 35(1), 80–93.CrossRefGoogle Scholar
  16. Lahdelma, R., Hokkanen, J., & Salminen, P. (1998). SMAA—Stochastic multiobjective acceptability analysis. European Journal of Operational Research, 106, 136–143.CrossRefGoogle Scholar
  17. Lahdelma, R., & Salminen, P. (2001). SMAA-2: Stochastic multicriteria acceptability analysis for group decision making. Operations Research, 49(3), 444–454.CrossRefGoogle Scholar
  18. Liberatore, M. J., & Nydick, R. L. (2008). The Analytic Hierarchy Process in medical and health care decision making: A literature review. European Journal of Operational Research, 189(1), 194–207.CrossRefGoogle Scholar
  19. Lin, M. H., Carlsson, J. G., Ge, D., Shi, J., & Tsai, J. F. (2013). A review of piecewise linearization methods. Mathematical Problems in Engineering. Scholar
  20. Mavriplis, D. J. (1996). Mesh generation and adaptivity for complex geometries and flows. In Roger Peyret (Ed.), Handbook of computational fluid mechanics (pp. 417–459). London: Academic Press.CrossRefGoogle Scholar
  21. May, J. H., Shang, J., Tjader, Y. C., & Vargas, L. G. (2013). A new methodology for sensitivity and stability analysis of analytic network models. European Journal of Operations Research, 224(1), 180–188.CrossRefGoogle Scholar
  22. Saaty, T. L. (1980). The Analytic Hierarchy Process. New York: McGraw Hill.Google Scholar
  23. Saaty, T. L., & Vargas, L. G. (1998). Diagnosis with dependent symptoms: Bayes theorem and the Analytic Hierarchy Process. Operations Research, 46(4), 491–502.CrossRefGoogle Scholar
  24. Sato, Y. (1992). Piecewise linear approximation of plane curves by perimeter optimization. Pattern Recognition, 25(12), 1535–1543.CrossRefGoogle Scholar
  25. Sava, M. G. (2016). Contributions to the theory of sensitivity and stability analysis of multicriteria decision models, with applications to medical decision making. Doctoral dissertation, University of Pittsburgh.Google Scholar
  26. Sava, M. G., Dolan, J. G., May, J. H., & Vargas, L. G. (2018). A personalized approach of patient-health care provider communication regarding colorectal cancer screening options. Medical Decision Making, 38(5), 601–613.CrossRefGoogle Scholar
  27. Schmidt, K., Aumann, I., Hollander, I., Damm, K., & Graf von der Schulenburg, J. M. (2015). Applying the Analytic Hierarchy Process in healthcare research: a systematic literature review and evaluation of reporting. BMC Medical Informatics and Decision Making. Scholar
  28. Shirley, P., Ashikhmin, M., & Marschner, S. (2009). Fundamental of computer graphics. Natick, MA: A.K. Peters Ltd.CrossRefGoogle Scholar
  29. Thompson, J. F., Warsi, Z. U. A., & Mastin, C. W. (1985). Numerical grid generation: Foundations and applications. New York: Elsevier Science Pub. Co.Google Scholar
  30. U.S. Preventive Service Task Force. (2008). Screening for colorectal cancer: U.S. preventive task force recommendation force. Annals of Internal Medicine, 149, 627–637.CrossRefGoogle Scholar
  31. U.S. Preventive Service Task Force. (2016). Screening for colorectal cancer: U.S. preventive services task force recommendation statement. Journal of the American Medical Association, 315(23), 2564–2575.CrossRefGoogle Scholar
  32. Wang, M., Liu, Y. W., Li, X. (2014). Type-2 diabetes management using Analytic Hierarchy Process and Analytic Network Process. In Proceedings of the 11th IEEE international conference on networking, sensing and control.
  33. Wilkinson, J. H. (1965). The algebraic eigenvalue problem. Oxford: Clarendon Press.Google Scholar
  34. Williams, C. M. (1978). An efficient algorithm for the piecewise linear approximation of planar curves. Computer Graphics and Image Processing, 8, 286–293.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of BusinessClemson UniversityClemsonUSA
  2. 2.The Joseph M. Katz Graduate School of BusinessUniversity of PittsburghPittsburghUSA
  3. 3.Department of Public Health SciencesUniversity of Rochester Medical CenterRochesterUSA

Personalised recommendations