# An analysis of the sensitivity and stability of patients’ preferences can lead to more appropriate medical decisions

- 43 Downloads

## Abstract

Patients are faced with multiple alternatives when selecting the preferred method for colorectal cancer screening, and there are multiple criteria to be considered in the decision-making process. We model patients’ choices using a multicriteria decision model, specifically an Analytic Hierarchy Process-based model, and propose a new approach for characterizing the idiosyncratic preference regions for individual patients. The new approach involves the development of a personalized sensitivity and stability analysis of preferences that provides pertinent insights about the changes that occur in a patient’s preferences, as he/she learns additional relevant medical information. We show how the insights derived from the sensitivity and stability of patients’ preferences could be used by a healthcare provider within the medical decision-making process.

## Keywords

Multicriteria decision-making Analytic Network Process (ANP) Analytic Hierarchy Process (AHP) Sensitivity and stability analysis Medical decision-making## Notes

### Acknowledgements

We thank the two anonymous reviewers for their helpful comments and suggestions.

## References

- Angilella, S., Corrente, S., & Greco, S. (2015). Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem.
*European Journal of Operational Research,**240,*172–182.CrossRefGoogle Scholar - Bennett, K. P., & Mangasarian, O. L. (1994). Multicategory discrimination via linear programming.
*Optimization Methods and Software,**3*(1–4), 27–39.CrossRefGoogle Scholar - Bredensteiner, E. J., & Bennett, K. P. (1999). Multicategory classification by support vector machines.
*Computational Optimization and Applications,**12*(1), 53–79.Google Scholar - Carter, K. J., Ritchey, N. P., Castro, F., Caccamo, L. P., Kessler, E., & Erickson, B. A. (1999). Analysis of three decision making methods: A breast cancer patient as a model.
*Medical Decision Making,**19*(1), 49–57.CrossRefGoogle Scholar - Corrente, S., Figueira, J. R., & Greco, S. (2014). The SMAA-PROMETHEE method.
*European Journal of Operational Research,**239,*514–522.CrossRefGoogle Scholar - de Berg, M., Cheong, O., van Kreveld, M., & Overmars, M. (2008).
*Computational geometry. Algorithm and applications*. Berlin: Springer.Google Scholar - Delaunay, B. (1934). Sur la sphère vide. A la mémoire de George Voronoi.
*Bulletin de l’Académie des Sciences de l’URSS, Classe des sciences mathématique et na, Issue,**6,*793–800.Google Scholar - Dolan, J. G. (1995). Are patients capable of using the Analytic Hierarchy Process and willing to use it to help make clinical decisions?
*Medical Decision Making,**15*(1), 76–80.CrossRefGoogle Scholar - Dolan, J. G., Boohaker, E., Allison, J., & Imperiale, T. F. (2013). Patients’ preferences and priorities regarding colorectal cancer screening.
*Medical Decision Making,**33*(1), 59–70.CrossRefGoogle Scholar - Dolan, J. G., Boohaker, E., Allison, J., & Imperiale, T. F. (2014). Can streamlined multicriteria decision analysis be used to implement shared decision making for colorectal cancer screening?
*Medical Decision Making,**34*(6), 746–755.CrossRefGoogle Scholar - Dolan, J. G., & Frisina, S. (2002). Randomized controlled trial of a patient decision aid for colorectal cancer screening.
*Medical Decision Making,**22*(2), 125–139.CrossRefGoogle Scholar - Dunham, J. G. (1986). Optimum uniform piecewise linear approximation of planar curves.
*IEEE Transactions on Pattern Analysis and Machine Intelligence,**8*(1), 67–75.CrossRefGoogle Scholar - Durbach, I., Lahdelma, R., & Salminen, P. (2014). The analytic hierachy process with stochastic judgements.
*European Journal of Operational Research,**238,*552–559.CrossRefGoogle Scholar - Edelsbrunner, H. (2001).
*Geometry and topology for mesh generation*. New York: Cambridge University Press.CrossRefGoogle Scholar - Keener, J. P. (1993). The Perron-Frobenius theorem and the ranking of football teams.
*SIAM Review,**35*(1), 80–93.CrossRefGoogle Scholar - Lahdelma, R., Hokkanen, J., & Salminen, P. (1998). SMAA—Stochastic multiobjective acceptability analysis.
*European Journal of Operational Research,**106,*136–143.CrossRefGoogle Scholar - Lahdelma, R., & Salminen, P. (2001). SMAA-2: Stochastic multicriteria acceptability analysis for group decision making.
*Operations Research,**49*(3), 444–454.CrossRefGoogle Scholar - Liberatore, M. J., & Nydick, R. L. (2008). The Analytic Hierarchy Process in medical and health care decision making: A literature review.
*European Journal of Operational Research,**189*(1), 194–207.CrossRefGoogle Scholar - Lin, M. H., Carlsson, J. G., Ge, D., Shi, J., & Tsai, J. F. (2013). A review of piecewise linearization methods.
*Mathematical Problems in Engineering*. https://doi.org/10.1155/2013/101376.CrossRefGoogle Scholar - Mavriplis, D. J. (1996). Mesh generation and adaptivity for complex geometries and flows. In Roger Peyret (Ed.),
*Handbook of computational fluid mechanics*(pp. 417–459). London: Academic Press.CrossRefGoogle Scholar - May, J. H., Shang, J., Tjader, Y. C., & Vargas, L. G. (2013). A new methodology for sensitivity and stability analysis of analytic network models.
*European Journal of Operations Research,**224*(1), 180–188.CrossRefGoogle Scholar - Saaty, T. L. (1980).
*The Analytic Hierarchy Process*. New York: McGraw Hill.Google Scholar - Saaty, T. L., & Vargas, L. G. (1998). Diagnosis with dependent symptoms: Bayes theorem and the Analytic Hierarchy Process.
*Operations Research,**46*(4), 491–502.CrossRefGoogle Scholar - Sato, Y. (1992). Piecewise linear approximation of plane curves by perimeter optimization.
*Pattern Recognition,**25*(12), 1535–1543.CrossRefGoogle Scholar - Sava, M. G. (2016).
*Contributions to the theory of sensitivity and stability analysis of multicriteria decision models, with applications to medical decision making*. Doctoral dissertation, University of Pittsburgh.Google Scholar - Sava, M. G., Dolan, J. G., May, J. H., & Vargas, L. G. (2018). A personalized approach of patient-health care provider communication regarding colorectal cancer screening options.
*Medical Decision Making,**38*(5), 601–613.CrossRefGoogle Scholar - Schmidt, K., Aumann, I., Hollander, I., Damm, K., & Graf von der Schulenburg, J. M. (2015). Applying the Analytic Hierarchy Process in healthcare research: a systematic literature review and evaluation of reporting.
*BMC Medical Informatics and Decision Making*. https://doi.org/10.1186/s12911-015-0234-7.CrossRefGoogle Scholar - Shirley, P., Ashikhmin, M., & Marschner, S. (2009).
*Fundamental of computer graphics*. Natick, MA: A.K. Peters Ltd.CrossRefGoogle Scholar - Thompson, J. F., Warsi, Z. U. A., & Mastin, C. W. (1985).
*Numerical grid generation: Foundations and applications*. New York: Elsevier Science Pub. Co.Google Scholar - U.S. Preventive Service Task Force. (2008). Screening for colorectal cancer: U.S. preventive task force recommendation force.
*Annals of Internal Medicine,**149,*627–637.CrossRefGoogle Scholar - U.S. Preventive Service Task Force. (2016). Screening for colorectal cancer: U.S. preventive services task force recommendation statement.
*Journal of the American Medical Association,**315*(23), 2564–2575.CrossRefGoogle Scholar - Wang, M., Liu, Y. W., Li, X. (2014). Type-2 diabetes management using Analytic Hierarchy Process and Analytic Network Process. In
*Proceedings of the 11*th*IEEE international conference on networking, sensing and control*. https://doi.org/10.1109/icnsc.2014.6819703. - Wilkinson, J. H. (1965).
*The algebraic eigenvalue problem*. Oxford: Clarendon Press.Google Scholar - Williams, C. M. (1978). An efficient algorithm for the piecewise linear approximation of planar curves.
*Computer Graphics and Image Processing,**8,*286–293.CrossRefGoogle Scholar