Advertisement

A polyhedral study of dynamic monopolies

  • Hossein Soltani
  • Babak Moazzez
Original Research
  • 16 Downloads

Abstract

Spread of influence in a network can be modeled and studied within the concept of dynamic monopolies in graphs. We give an integer programming formulation for finding a minimum dynamic monopoly in an undirected graph. The corresponding 0–1 polytope and its facets are studied and several families of facet defining inequalities are introduced. Computational experiments have been performed to show the strength of the IP formulation and its facet defining inequalities.

Keywords

Integer programming Dynamic monopoly Facets 

Mathematics Subject Classification

90C10 05C69 90C57 

References

  1. Ackerman, E., Ben-Zwi, O., & Wolfovitz, G. (2010). Combinatorial model and bounds for target set selection. Theoretical Computer Science, 411(44–46), 4017–4022.  https://doi.org/10.1016/j.tcs.2010.08.021.CrossRefGoogle Scholar
  2. Chang, C. L., & Lyuu, Y. D. (2013). Bounding the sizes of dynamic monopolies and convergent sets for threshold-based cascades. Theoretical Computer Science, 468, 37–49.  https://doi.org/10.1016/j.tcs.2012.11.016, http://www.sciencedirect.com/science/article/pii/S0304397512010468.
  3. Flocchini, P., Lodi, E., Luccio, F., Pagli, L., & Santoro, N. (2004). Dynamic monopolies in Tori. Discrete Applied Mathematics 137(2):197–212.  https://doi.org/10.1016/S0166-218X(03)00261-0, 1st international workshop on algorithms, combinatorics, and optimization in interconnection networks (IWACOIN ’99)
  4. Günneç, D., Raghavan, S., & Zhang, R. (2017). Tailored incentives and least cost influence maximization on social networks. http://terpconnect.umd.edu/~raghavan/preprints/LCIP.pdf
  5. Hammer, P. L., Johnson, E. L., & Peled, U. N. (1975). Facets of regular 0–1 polytopes. Mathematical Programming, 8, 179–206.  https://doi.org/10.1007/BF01580442.CrossRefGoogle Scholar
  6. Kempe, D., Kleinberg, J., & Tardos, E. (2015). Maximizing the spread of influence through a social network. Theory of Computation, 11, 105–147.  https://doi.org/10.4086/toc.2015.v011a004.CrossRefGoogle Scholar
  7. Khoshkhah, K., Soltani, H., & Zaker, M. (2012). On dynamic monopolies of graphs: the average and strict majority thresholds. Discrete Optimization 9(2):77–83. http://www.sciencedirect.com/science/article/pii/S1572528612000151
  8. Khoshkhah, K., Nemati, M., Soltani, H., & Zaker, M. (2013). A study of monopolies in graphs. Graphs and Combinatorics, 29(5), 1417–1427.  https://doi.org/10.1007/s00373-012-1214-7.CrossRefGoogle Scholar
  9. Khoshkhah, K., Soltani, H., & Zaker, M. (2014). Dynamic monopolies in directed graphs: The spread of unilateral influence in social networks. Discrete Applied Mathematics, 171, 81–89.  https://doi.org/10.1016/j.dam.2014.02.006.CrossRefGoogle Scholar
  10. Moazzez, B., & Soltani, H. (2018). Integer programming approach to static monopolies in graphs. Journal of Combinatorial Optimization, 35(4), 1009–1041.  https://doi.org/10.1007/s10878-018-0256-z.CrossRefGoogle Scholar
  11. Nemhauser, G., & Wolsey, L. (1999). Integer and combinatorial optimization. Wiley-interscience series in discrete mathematics and optimization. New York: Wiley, reprint of the 1988 original, A Wiley-Interscience PublicationGoogle Scholar
  12. Soltani, H., & Zaker, M. (2014). On dynamic monopolies of graphs with probabilistic thresholds. Bulletin of the Australian Mathematical Society, 90(3), 363–375.  https://doi.org/10.1017/S0004972714000604.CrossRefGoogle Scholar
  13. Zaker, M. (2012). On dynamic monopolies of graphs with general thresholds. Discrete Mathematics, 312(6), 1136–1143.  https://doi.org/10.1016/j.disc.2011.11.038.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUrmia University of TechnologyUrmiaIran
  2. 2.Department of MathematicsKennesaw State UniversityKennesawUSA

Personalised recommendations