Skip to main content
Log in

Selecting an agricultural technology package based on the flexible and interactive tradeoff method

  • S.I.: Agriculture Analytics, BigData and Sustainable Development
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The aim of this paper is to solve an agricultural technology packages selection problem by considering multiple dimensions which influence a maize producer’s preferences. The decision-making process is aided by a new multicriteria method for eliciting scale constants in additive models: flexible and interactive tradeoff (FITradeoff). This method works with partial information, obtained from the decision maker (DM), and thus reduces the time that the DM has to spend on the process for eliciting his/her preferences as he/she may avoid answering difficult questions. The decision-making process makes use of a decision support system (DSS), in which the DM interactively gives preference statements in a structured manner. The DSS gives flexibility to the DM, in such way that he/she gives as much information as he/she is willing to. Graphical visualization is provided at each step in order to help the DM’s analyses. Throughout the description of an application, some insights are provided including a discussion of the advantages and features of the FITradeoff method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Adapted from de Almeida et al. (2016)

Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahumada, O., & Villalobos, J. R. (2009). Application of planning models in the agri-food supply chain: A review. European Journal of Operational Research, 196(1), 1–20.

    Article  Google Scholar 

  • Álvarez Carrillo, P. A., Leyva López, J. C., & Ahumada Valenzuela, O. (2017). A group decision outranking approach for the agricultural technology packages selection problem. In M. Schoop & D. Marc Kilgour (Eds.), International conference on group decision and negotiation (Vol. 293, pp. 187–201). Cham: Springer. https://doi.org/10.1007/978-3-319-63546-0_14.

    Chapter  Google Scholar 

  • Amor, S. B., Zaras, K., & Aguayo, E. A. (2016). The value of additional information in multicriteria decision making choice problems with information imperfections. Annals of Operations Research, 253, 61–76.

    Article  Google Scholar 

  • Belton, V., & Stewart, T. J. (2002). Multiple criteria decision analysis. Boston: Kluwer.

    Book  Google Scholar 

  • Byerlee, D., & De Polanco, E. H. (1986). Farmers’ stepwise adoption of technological packages: Evidence from the Mexican Altiplano. American Journal of Agricultural Economics, 68(3), 519–527.

    Article  Google Scholar 

  • Carpani, M., Bergez, J.-E., & Monod, H. (2012). Sensitivity analysis of a hierarchical qualitative model for sustainability assessment of cropping systems. Environmental Modelling and Software, 27–28, 15–22. https://doi.org/10.1016/j.envsoft.2011.10.002.

    Article  Google Scholar 

  • Craheix, D., Angevin, F., Doré, T., & De Tourdonnet, S. (2016). Using a multicriteria assessment model to evaluate the sustainability of conservation agriculture at the cropping system level in France. European Journal of Agronomy, 76, 75–86. https://doi.org/10.1016/j.eja.2016.02.002.

    Article  Google Scholar 

  • de Almeida, A. T., Cavalcante, C. A. V., Alencar, M. H., Ferreira, R. J. P., Al-meida-Filho, A. T., & Garcez, T. V. (2015). Multicriteria and multiobjective models for risk, reliability and maintenance decision analysis. International series in operations research & management science (Vol. 231). New York: Springer.

    Google Scholar 

  • de Almeida, A. T., de Almeida, J. A., Costa, A. P. C. S., & de Almeida-Filho, A. T. (2016). A new method for elicitation of criteria weights in additive models: Flexible and interactive Tradeoff. European Journal of Operational Research, 250, 179–191.

    Article  Google Scholar 

  • de Almeida-Filho, A. T., de Almeida, A. T., & Costa, A. P. C. S. (2017). A flexible elicitation procedure for additive model scale constants. Annals of Operations Research, 259, 1–19.

    Article  Google Scholar 

  • Deytieux, V., Munier-Jolain, N., & Caneill, J. (2016). Assessing the sustainability of cropping systems in single- and multi-site studies. A review of methods. European Journal of Agronomy, 72, 107–126. https://doi.org/10.1016/j.eja.2015.10.005.

    Article  Google Scholar 

  • Edwards, W., Miles, R. F., & von Winterfeldt, D. (2007). Advances in decision analysis. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Figueira, J., Greco, S., & Ehrgott, M. (2005). Multiple criteria decision analysis: State of the art surveys. Berlin: Springer.

    Book  Google Scholar 

  • FIRA. (2017a). Costos de cultivo de maize en temporada otoño-invierno 2017. Retrieved from: https://www.fira.gob.mx/InfEspDtoXML/abrirArchivo.jsp?abreArc=66317. Accessed 6 July 2017.

  • FIRA. (2017b). Condiciones de operación del servicio de fondeo entre FIRA y los intermediarios financieros, MN-ACR-SCR-001. Retrieved from: https://www.fira.gob.mx/Nd/Lineamientos_FONAGUA.pdf. Accessed 9 July 2017.

  • FIRA Agrocostos. (2017). Costos de producción agrícola. Retrieved from: https://www.fira.gob.mx/Nd/Agrocostos.jsp. Accessed 20 June 2017.

  • Keeney, R. L. (1992). Value focused thinking. Cambridge: Harvard University Press.

    Google Scholar 

  • Keeney, R. L., & Raiffa, H. (1976). Decision making with multiple objectives, preferences, and value tradeoffs. New York: Wiley.

    Google Scholar 

  • Kirkwood, C. W., & Sarin, R. K. (1985). Ranking with partial information: A method and an application. Operations Research, 33, 38–48.

    Article  Google Scholar 

  • Leyva, J. C., Álvarez, P. A., & Ahumada, O. (2017). A multicriteria group decision model for ranking technology packages in agriculture. In E. Cruz Corona (Ed.), Soft computing for sustainability science. Berlin: Springer. https://doi.org/10.1007/978-3-319-62359-7_7.

    Chapter  Google Scholar 

  • Mármol, A. M., Puerto, J., & Fernández, F. R. (2002). Sequential incorporation of imprecise information of multiple criteria decision processes. European Journal of Operational Research, 137, 123–133.

    Article  Google Scholar 

  • Montiel, L. V., & Bickel, J. E. (2014). A generalized sampling approach for multilinear utility functions given partial preference information. Decision Analysis, 11(3), 147–170.

    Article  Google Scholar 

  • Mustajóki, J., Hämäläinen, R. P., & Salo, A. (2005). Decision support by interval SMART/SWING—Incorporating imprecision in the SMART and SWING methods. Decision Sciences, 36(2), 317–339.

    Article  Google Scholar 

  • Pelzer, E., Fortino, G., Bockstaller, C., Angevin, F., Lamine, C., Moonen, C., et al. (2012). Assessing innovative cropping systems with DEXiPM, a qualitative multi-criteria assessment tool derived from DEXi. Ecological Indicators, 18, 171–182. https://doi.org/10.1016/j.ecolind.2011.11.019.

    Article  Google Scholar 

  • Salo, A., & Hämäläinen, R. P. (1992). Preference assessment by imprecise ratio statements. Operations Research, 40, 1053–1061.

    Article  Google Scholar 

  • Salo, A., & Hämäläinen, R. P. (2001). Preference ratios in multiattribute evaluation (PRIME)—Elicitation and decision procedures under incomplete information. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 31, 533–545.

    Article  Google Scholar 

  • Salo, A., & Punkka, A. (2005). Rank inclusion in criteria hierarchies. European Journal of Operational Research, 163, 338–356.

    Article  Google Scholar 

  • Weber, M. (1987). Decision making with incomplete information. European Journal of Operational Research, 28(1), 44–57.

    Article  Google Scholar 

  • Weber, M., & Borcherding, K. (1993). Behavioral influences on weight judgments in multi-attribute decision making. European Journal of Operational Research, 67, 1–12.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the partial financial support for this research from CNPq (Brazilian research council).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduarda Asfora Frej.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez Carrillo, P.A., Roselli, L.R.P., Frej, E.A. et al. Selecting an agricultural technology package based on the flexible and interactive tradeoff method. Ann Oper Res 314, 377–392 (2022). https://doi.org/10.1007/s10479-018-3020-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-3020-y

Keywords

Navigation