Selecting an agricultural technology package based on the flexible and interactive tradeoff method

  • Pavel Anselmo Alvarez Carrillo
  • Lucia Reis Peixoto Roselli
  • Eduarda Asfora Frej
  • Adiel Teixeira de Almeida
S.I.: Agriculture Analytics, BigData and Sustainable Development


The aim of this paper is to solve an agricultural technology packages selection problem by considering multiple dimensions which influence a maize producer’s preferences. The decision-making process is aided by a new multicriteria method for eliciting scale constants in additive models: flexible and interactive tradeoff (FITradeoff). This method works with partial information, obtained from the decision maker (DM), and thus reduces the time that the DM has to spend on the process for eliciting his/her preferences as he/she may avoid answering difficult questions. The decision-making process makes use of a decision support system (DSS), in which the DM interactively gives preference statements in a structured manner. The DSS gives flexibility to the DM, in such way that he/she gives as much information as he/she is willing to. Graphical visualization is provided at each step in order to help the DM’s analyses. Throughout the description of an application, some insights are provided including a discussion of the advantages and features of the FITradeoff method.


Multicriteria decision making Additive model Flexible and interactive tradeoff Partial information 



The authors gratefully acknowledge the partial financial support for this research from CNPq (Brazilian research council).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ahumada, O., & Villalobos, J. R. (2009). Application of planning models in the agri-food supply chain: A review. European Journal of Operational Research, 196(1), 1–20.CrossRefGoogle Scholar
  2. Álvarez Carrillo, P. A., Leyva López, J. C., & Ahumada Valenzuela, O. (2017). A group decision outranking approach for the agricultural technology packages selection problem. In M. Schoop & D. Marc Kilgour (Eds.), International conference on group decision and negotiation (Vol. 293, pp. 187–201). Cham: Springer. Scholar
  3. Amor, S. B., Zaras, K., & Aguayo, E. A. (2016). The value of additional information in multicriteria decision making choice problems with information imperfections. Annals of Operations Research, 253, 61–76.CrossRefGoogle Scholar
  4. Belton, V., & Stewart, T. J. (2002). Multiple criteria decision analysis. Boston: Kluwer.CrossRefGoogle Scholar
  5. Byerlee, D., & De Polanco, E. H. (1986). Farmers’ stepwise adoption of technological packages: Evidence from the Mexican Altiplano. American Journal of Agricultural Economics, 68(3), 519–527.CrossRefGoogle Scholar
  6. Carpani, M., Bergez, J.-E., & Monod, H. (2012). Sensitivity analysis of a hierarchical qualitative model for sustainability assessment of cropping systems. Environmental Modelling and Software, 27–28, 15–22. Scholar
  7. Craheix, D., Angevin, F., Doré, T., & De Tourdonnet, S. (2016). Using a multicriteria assessment model to evaluate the sustainability of conservation agriculture at the cropping system level in France. European Journal of Agronomy, 76, 75–86. Scholar
  8. de Almeida, A. T., Cavalcante, C. A. V., Alencar, M. H., Ferreira, R. J. P., Al-meida-Filho, A. T., & Garcez, T. V. (2015). Multicriteria and multiobjective models for risk, reliability and maintenance decision analysis. International series in operations research & management science (Vol. 231). New York: Springer.Google Scholar
  9. de Almeida, A. T., de Almeida, J. A., Costa, A. P. C. S., & de Almeida-Filho, A. T. (2016). A new method for elicitation of criteria weights in additive models: Flexible and interactive Tradeoff. European Journal of Operational Research, 250, 179–191.CrossRefGoogle Scholar
  10. de Almeida-Filho, A. T., de Almeida, A. T., & Costa, A. P. C. S. (2017). A flexible elicitation procedure for additive model scale constants. Annals of Operations Research, 259, 1–19.CrossRefGoogle Scholar
  11. Deytieux, V., Munier-Jolain, N., & Caneill, J. (2016). Assessing the sustainability of cropping systems in single- and multi-site studies. A review of methods. European Journal of Agronomy, 72, 107–126. Scholar
  12. Edwards, W., Miles, R. F., & von Winterfeldt, D. (2007). Advances in decision analysis. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  13. Figueira, J., Greco, S., & Ehrgott, M. (2005). Multiple criteria decision analysis: State of the art surveys. Berlin: Springer.CrossRefGoogle Scholar
  14. FIRA. (2017a). Costos de cultivo de maize en temporada otoño-invierno 2017. Retrieved from: Accessed 6 July 2017.
  15. FIRA. (2017b). Condiciones de operación del servicio de fondeo entre FIRA y los intermediarios financieros, MN-ACR-SCR-001. Retrieved from: Accessed 9 July 2017.
  16. FIRA Agrocostos. (2017). Costos de producción agrícola. Retrieved from: Accessed 20 June 2017.
  17. Keeney, R. L. (1992). Value focused thinking. Cambridge: Harvard University Press.Google Scholar
  18. Keeney, R. L., & Raiffa, H. (1976). Decision making with multiple objectives, preferences, and value tradeoffs. New York: Wiley.Google Scholar
  19. Kirkwood, C. W., & Sarin, R. K. (1985). Ranking with partial information: A method and an application. Operations Research, 33, 38–48.CrossRefGoogle Scholar
  20. Leyva, J. C., Álvarez, P. A., & Ahumada, O. (2017). A multicriteria group decision model for ranking technology packages in agriculture. In E. Cruz Corona (Ed.), Soft computing for sustainability science. Berlin: Springer. Scholar
  21. Mármol, A. M., Puerto, J., & Fernández, F. R. (2002). Sequential incorporation of imprecise information of multiple criteria decision processes. European Journal of Operational Research, 137, 123–133.CrossRefGoogle Scholar
  22. Montiel, L. V., & Bickel, J. E. (2014). A generalized sampling approach for multilinear utility functions given partial preference information. Decision Analysis, 11(3), 147–170.CrossRefGoogle Scholar
  23. Mustajóki, J., Hämäläinen, R. P., & Salo, A. (2005). Decision support by interval SMART/SWING—Incorporating imprecision in the SMART and SWING methods. Decision Sciences, 36(2), 317–339.CrossRefGoogle Scholar
  24. Pelzer, E., Fortino, G., Bockstaller, C., Angevin, F., Lamine, C., Moonen, C., et al. (2012). Assessing innovative cropping systems with DEXiPM, a qualitative multi-criteria assessment tool derived from DEXi. Ecological Indicators, 18, 171–182. Scholar
  25. Salo, A., & Hämäläinen, R. P. (1992). Preference assessment by imprecise ratio statements. Operations Research, 40, 1053–1061.CrossRefGoogle Scholar
  26. Salo, A., & Hämäläinen, R. P. (2001). Preference ratios in multiattribute evaluation (PRIME)—Elicitation and decision procedures under incomplete information. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 31, 533–545.CrossRefGoogle Scholar
  27. Salo, A., & Punkka, A. (2005). Rank inclusion in criteria hierarchies. European Journal of Operational Research, 163, 338–356.CrossRefGoogle Scholar
  28. Weber, M. (1987). Decision making with incomplete information. European Journal of Operational Research, 28(1), 44–57.CrossRefGoogle Scholar
  29. Weber, M., & Borcherding, K. (1993). Behavioral influences on weight judgments in multi-attribute decision making. European Journal of Operational Research, 67, 1–12.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Economic and Management SciencesUniversidad de OccidenteCuliacanMexico
  2. 2.CDSID - Center for Decision Systems and Information DevelopmentUniversidade Federal de PernambucoRecifeBrazil

Personalised recommendations