Modelling the inter-relationship between factors affecting coordination in a humanitarian supply chain: a case of Chennai flood relief


The humanitarian supply chain (HSC) aims at providing relief to affected people in the wake of a disaster at the right place and at the right time to reduce their suffering. One of the major challenges faced by the HSC is the coordination between various actors. Previous studies have identified the factors affecting coordination but the literature is silent on the inter-dependence between these factors (criteria). In this study, we identify the factors affecting coordination based on the review of extant literature in HSC and interviews with multiple individuals representing various stakeholders involved with the relief activities carried out during the Chennai floods. These factors were grouped into four categories: information sharing, diversity (of the humanitarian agencies), organizational mandates and material convergence. We use a hybrid fuzzy DEMATEL-ANP methodology to identify the interdependence and develop the network relationship diagram by mapping the interdependence between the factors affecting the effective coordination between the actors in HSC. Our results indicate that information exchange between the humanitarian actors (HA) tantamount to achieve coordination in post disaster response phase. However, with the improvement in the post–disaster coordination, the HAs need to focus on pre-disaster preparedness phase through strong alignment of organizational mandates of HAs and focus on the diverse nature of HAs to align their operational strategies through standardized operations, inter-operability of activities and building trust through long term associations.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1


  1. 1.

    Janardhanan, Arun (2 December 2015b). "Chennai drowns in deluge of water; flight services suspended". The Indian Express.

  2. 2.


  3. 3.

    Rajendran D. and Ramanathan S. (2015) Chennai floods: What happened at Chembarambakkam, negligence or nature’s fury? The News Minute (Retrieved on 9 December, 2015).

  4. 4.

    "As sky turns menacing again, rescue efforts intensified". The Hindu. 5 December 2015.

  5. 5.

    "Navy rushes amphibious ship to Chennai for relief ops". The Hindu. 3 December 2015.

  6. 6.

    "Chennai floods: Centre sends 17 tonnes of snacks, 5000 litres milk to Tamil Nadu". The Indian Express. 4 December 2015.


  1. Adinolfi, C., Bassiouni, D., Lauritzsen, H. F., & Williams, H. R. (2005). Humanitarian response review: An independent report. New York: UN.

  2. Altay, N., & Labonte, M. (2014). Challenges in humanitarian information management and exchange: Evidence from Haiti. Disasters,38(s1), S50–S72.

  3. Altay, N., & Pal, R. (2014). Information diffusion among agents: Implications for humanitarian operations. Production and Operations Management,23(6), 1015–1027.

  4. Anaya-Arenas, A. M., Renaud, J., & Ruiz, A. (2014). Relief distribution networks: A systematic review. Annals of Operations Research,223(1), 53–79.

  5. Apte, A. (2009). Humanitarian logistics: A new field of research and action. Foundations and Trends ®in Technology, Information and Operations Management, 3(1), 1–100.

  6. Balcik, B., Beamon, B. M., Krejci, C. C., Muramatsu, K. M., & Ramirez, M. (2010). Coordination in humanitarian relief chains: Practices, challenges and opportunities. International Journal of Production Economics,126(1), 22–34.

  7. Banomyong, R., Varadejsatitwong, P., & Oloruntoba, R. (2017). A systematic review of humanitarian operations, humanitarian logistics and humanitarian supply chain performance literature 2005 to 2016. Annals of Operations Research.

  8. Büyüközkan, G., & Çifçi, G. (2012). A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers. Expert Systems with Applications,39(3), 3000–3011.

  9. Büyüközkan, G., & Öztürkcan, D. (2010). An integrated analytic approach for Six Sigma project selection. Expert Systems with Applications,37(8), 5835–5847.

  10. Chang, B., Chang, C. W., & Wu, C. H. (2011). Fuzzy DEMATEL method for developing supplier selection criteria. Expert systems with Applications, 38(3), 1850–1858.

  11. Chen, J. K., & Chen, I. S. (2010). Using a novel conjunctive MCDM approach based on DEMATEL, fuzzy ANP, and TOPSIS as an innovation support system for Taiwanese higher education. Expert Systems with Applications,37(3), 1981–1990.

  12. Chen, F. H., Hsu, T. S., & Tzeng, G. H. (2011). A balanced scorecard approach to establish a performance evaluation and relationship model for hot spring hotels based on a hybrid MCDM model combining DEMATEL and ANP. International Journal of Hospitality Management,30(4), 908–932.

  13. Chia, E. (2007). Engineering disaster relief. IEEE Technology and Society Magazine,26(3), 24–29.

  14. Comfort, L. K. (2007). Crisis management in hindsight: Cognition, communication, coordination, and control. Public Administration Review,67(s1), 189–197.

  15. Davis, L. B., Samanlioglu, F., Qu, X., & Root, S. (2013). Inventory planning and coordination in disaster relief efforts. International Journal of Production Economics,141(2), 561–573.

  16. Datta, S., Samantra, C., Sankar Mahapatra, S., Mandal, G., & Majumdar, G. (2013). Appraisement and selection of third party logistics service providers in fuzzy environment. Benchmarking: An International Journal, 20(4), 537–548.

  17. Day, J. M., Melnyk, S. A., Larson, P. D., Davis, E. W., & Clay Whybark, D. (2012). Humanitarian and disaster relief supply chains: A matter of life and death. Journal of Supply Chain Management,48(2), 21–36.

  18. Deb, S. K., Bhattacharyya, B., & Sorkhel, S. K. (2002). Material handling equipment selection by fuzzy multi-criteria decision making methods. In AFSS international conference on fuzzy systems (pp. 99–105). Heidelberg: Springer.

  19. Dubey, R., Altay, N., & Blome, C. (2017). Swift trust and commitment: The missing links for humanitarian supply chain coordination? Annals of Operations Research.

  20. Ergun, Ö., Gui, L., Heier Stamm, J. L., Keskinocak, P., & Swann, J. (2014). Improving humanitarian operations through technology-enabled collaboration. Production and Operations Management,23(6), 1002–1014.

  21. Ertem, M., Buyurgan, N., & Pohl, E. (2012). Using announcement options in the bid construction phase for disaster relief procurement. Socio-Economic Planning Sciences,46(4), 306–314.

  22. Fritz, C. E., & Mathewson, J. H. (1957). Convergent behavior: A disaster control problem. Special report for the committee on disaster studies. Disaster study (Vol. 9, p. 476). N. R. C. National Academy of Sciences.

  23. Gabus, A., & Fontela, E. (1973). Perceptions of the world problematique: Communication procedure, communicating with those bearing collective responsibility. Geneva: Battelle Geneva Research Center.

  24. Gölcük, İ., & Baykasoğlu, A. (2016). An analysis of DEMATEL approaches for criteria interaction handling within ANP. Expert Systems with Applications,46, 346–366.

  25. Gonzalez, R. A. (2010). Developing a multi-agent system of a crisis response organization. Business Process Management Journal,16(5), 847–870.

  26. Gupta, R., Sachdeva, A., & Bhardwaj, A. (2012). Selection of logistic service provider using fuzzy PROMETHEE for a cement industry. Journal of Manufacturing Technology Management, 23(7), 899–921.

  27. Haleh, H., & Hamidi, A. (2011). A fuzzy MCDM model for allocating orders to suppliers in a supply chain under uncertainty over a multi-period time horizon. Expert Systems with Applications,38(8), 9076–9083.

  28. He, T., Ho, W., Lee Ka Man, C., & Xu, X. (2012). A fuzzy AHP based integer linear programming model for the multi-criteria transshipment problem. The International Journal of Logistics Management,23(1), 159–179.

  29. Heaslip, G., Sharif, A. M., & Althonayan, A. (2012). Employing a systems-based perspective to the identification of inter-relationships within humanitarian logistics. International Journal of Production Economics,139(2), 377–392.

  30. Holguín-Veras, J., Jaller, M., Van Wassenhove, L. N., Pérez, N., & Wachtendorf, T. (2012). Material convergence: Important and understudied disaster phenomenon. Natural Hazards Review,15(1), 1–12.

  31. Holguín-Veras, J., Pérez, N., Ukkusuri, S., Wachtendorf, T., & Brown, B. (2007). Emergency logistics issues affecting the response to Katrina: A synthesis and preliminary suggestions for improvement. Transportation Research Record: Journal of the Transportation Research Board,2022, 76–82.

  32. Holguín-Veras, J., Taniguchi, E., Jaller, M., Aros-Vera, F., Ferreira, F., & Thompson, R. G. (2014). The Tohoku disasters: Chief lessons concerning the post disaster humanitarian logistics response and policy implications. Transportation Research Part A: Policy and Practice,69, 86–104.

  33. Hossain, L., & Uddin, S. (2012). Design patterns: Coordination in complex and dynamic environments. Disaster Prevention and Management: An International Journal,21(3), 336–350.

  34. Hristidis, V., Chen, S. C., Li, T., Luis, S., & Deng, Y. (2010). Survey of data management and analysis in disaster situations. Journal of Systems and Software,83(10), 1701–1714.

  35. Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making, methods and applications (Vol. 186). New York: Springer.

  36. Jabbour, C. J. C., Sobreiro, V. A., de Sousa Jabbour, A. B. L., de Souza Campos, L. M., Mariano, E. B., & Renwick, D. W. S. (2017). An analysis of the literature on humanitarian logistics and supply chain management: Paving the way for future studies. Annals of Operations Research, 1–19.

  37. Jahre, M., & Jensen, L. (2010). Coordination in humanitarian logistics through clusters. International Journal of Physical Distribution & Logistics Management,40(8/9), 657–674.

  38. Kamradt-Scott, A. (2016). WHO’s to blame? The World Health Organization and the 2014 Ebola outbreak in West Africa. Third World Quarterly,37(3), 401–418.

  39. Kayikci, Y. (2010). A conceptual model for intermodal freight logistics centre location decisions. Procedia-Social and Behavioral Sciences,2(3), 6297–6311.

  40. Kent, R. C. (2004). International humanitarian crises: two decades before and two decades beyond. International Affairs, 80(5), 851–869.

  41. Kovács, G., & Spens, K. M. (2011). Trends and developments in humanitarian logistics-a gap analysis. International Journal of Physical Distribution & Logistics Management,41(1), 32–45.

  42. Leiras, A., De Brito Jr, I., Queiroz Peres, E., Rejane Bertazzo, T., & Tsugunobu Yoshida Yoshizaki, H. (2014). Literature review of humanitarian logistics research: Trends and challenges. Journal of Humanitarian Logistics and Supply Chain Management,4(1), 95–130.

  43. Li, Y., Liu, X., & Chen, Y. (2011). Selection of logistics center location using Axiomatic Fuzzy Set and TOPSIS methodology in logistics management. Expert Systems with Applications,38(6), 7901–7908.

  44. Moshtari, M. (2016). Inter-organizational fit, relationship management capability, and collaborative performance within a humanitarian setting. Production and Operations Management,25(9), 1542–1557.

  45. Olaogbebikan, J. E., & Oloruntoba, R. (2017). Similarities between disaster supply chains and commercial supply chains: A SCM process view. Annals of Operations Research.

  46. Oloruntoba, R. (2005). A wave of destruction and the waves of relief: Issues, challenges and strategies. Disaster Prevention and Management: An International Journal,14(4), 506–521.

  47. Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research,156(2), 445–455.

  48. Paksoy, T., Pehlivan, N. Y., & Kahraman, C. (2012). Organizational strategy development in distribution channel management using fuzzy AHP and hierarchical fuzzy TOPSIS. Expert Systems with Applications,39(3), 2822–2841.

  49. Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.

  50. Saaty, T. L. (1996). Multi-criteria decision making. Pittsburgh: The Analytic Hierarchy Process.

  51. Sawicka, H., & Zak, J. (2014). Ranking of distribution system’s redesign scenarios using stochastic MCDM/A procedure. Procedia-Social and Behavioral Sciences,111, 186–196.

  52. Schulz, S. F., & Blecken, A. (2010). Horizontal cooperation in disaster relief logistics: Benefits and impediments. International Journal of Physical Distribution & Logistics Management,40(8/9), 636–656.

  53. Seybolt, T. B. (2009). Harmonizing the humanitarian aid network: Adaptive change in a complex system. International Studies Quarterly,53(4), 1027–1050.

  54. Shen, Y. C., Lin, G. T., & Tzeng, G. H. (2011). Combined DEMATEL techniques with novel MCDM for the organic light emitting diode technology selection. Expert Systems with Applications,38(3), 1468–1481.

  55. Sheppard, A., Tatham, P., Fisher, R., & Gapp, R. (2013). Humanitarian logistics: Enhancing the engagement of local populations. Journal of Humanitarian Logistics and Supply Chain Management,3(1), 22–36.

  56. Stephenson, M., Jr. (2005). Making humanitarian relief networks more effective: Operational coordination, trust and sense making. Disasters,29(4), 337–350.

  57. Tatham, P., & Kovács, G. (2010). The application of “swift trust” to humanitarian logistics. International Journal of Production Economics,126(1), 35–45.

  58. Tatham, P., & Spens, K. (2011). Towards a humanitarian logistics knowledge management system. Disaster Prevention and Management: An International Journal,20(1), 6–26.

  59. Telford, John. (2006). Joint evaluation of the international response to the Indian Ocean tsunami: Synthesis report. London: Tsunami Evaluation Coalition.

  60. Tomasini, R. M., & Van Wassenhove, L. N. (2009). From preparedness to partnerships: Case study research on humanitarian logistics. International Transactions in Operational Research,16(5), 549–559.

  61. Tseng, M. L. (2009). Application of ANP and DEMATEL to evaluate the decision-making of municipal solid waste management in Metro Manila. Environmental Monitoring and Assessment,156(1), 181–197.

  62. Tseng, M. L. (2011). Using a hybrid MCDM model to evaluate firm environmental knowledge management in uncertainty. Applied Soft Computing,11(1), 1340–1352.

  63. Tuzkaya, G., & Gülsün, B. (2008). Evaluating centralized return centers in a reverse logistics network: An integrated fuzzy multi-criteria decision approach. International Journal of Environmental Science and Technology,5(3), 339–352.

  64. Van Wassenhove, L. N. (2006). Blackett Memorial Lecture -Humanitarian aid logistics: Supply chain management in high gear. Journal of the Operational Research Society,57(5), 475–489.

  65. Wu, W. W. (2008). Choosing knowledge management strategies by using a combined ANP and DEMATEL approach. Expert Systems with Applications,35(3), 828–835.

  66. Yates, D., & Paquette, S. (2011). Emergency knowledge management and social media technologies: A case study of the 2010 Haitian earthquake. International Journal of Information Management,31(1), 6–13.

  67. Zetter, R. (1995). Incorporation and exclusion: The life cycle of Malawi’s Refugee assistance program. World Development,23(10), 1653–1667.

  68. Zhou, Q., Huang, W., & Zhang, Y. (2011). Identifying critical success factors in emergency management using a fuzzy DEMATEL method. Safety Science,49(2), 243–252.

Download references


The authors would like to thank the members of Tamil Nadu Water Board, Communist Party of India (Marxist), Ms. Saritha Sugunan (Pepper Corn), Prof. Gladston Xavier, and all others who shared their valuable experience and insights on their experience during the Chennai Floods.

Author information

Correspondence to Vipul Jain.



See Tables 6, 7, 8, 9, 10 and 11.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

John, L., Gurumurthy, A., Soni, G. et al. Modelling the inter-relationship between factors affecting coordination in a humanitarian supply chain: a case of Chennai flood relief. Ann Oper Res 283, 1227–1258 (2019) doi:10.1007/s10479-018-2963-3

Download citation


  • Disaster management
  • Humanitarian supply chain
  • Fuzzy
  • ANP
  • Coordination
  • Floods
  • Chennai