# A perfect information lower bound for robust lot-sizing problems

- 51 Downloads

## Abstract

Robust multi-stage linear optimization is hard computationally and only small problems can be solved exactly. Hence, robust multi-stage linear problems are typically addressed heuristically through decision rules, which provide upper bounds for the optimal solution costs of the problems. We investigate in this paper lower bounds inspired by the perfect information relaxation used in stochastic programming. Specifically, we study the uncapacitated robust lot-sizing problem, showing that different versions of the problem become tractable whenever the non-anticipativity constraints are relaxed. Hence, we can solve the resulting problem efficiently, obtaining a lower bound for the optimal solution cost of the original problem. We compare numerically the solution time and the quality of the new lower bound with the dual affine decision rules that have been proposed by Kuhn et al. (Math Program 130:177–209, 2011).

## Keywords

Multi-stage robust optimization Perfect information Lot-sizing problem Complexity## Supplementary material

## References

- Agra, A., Christiansen, M., Figueiredo, R. M. V., Hvattum, L. M., Poss, M., & Requejo, C. (2013). The robust vehicle routing problem with time windows.
*Computers & OR*,*40*(3), 856–866. https://doi.org/10.1016/j.cor.2012.10.002.CrossRefGoogle Scholar - Agra, A., Santos, M. C., Nace, D., & Poss, M. (2016). A dynamic programming approach for a class of robust optimization problems.
*SIAM Journal on Optimization*,*26*(3), 1799–1823.CrossRefGoogle Scholar - Avriel, M., & Williams, A. (1970). The value of information and stochastic programming.
*Operations Research*,*18*(5), 947–954.CrossRefGoogle Scholar - Ayoub, J., & Poss, M. (2016). Decomposition for adjustable robust linear optimization subject to uncertainty polytope.
*Computational Management Science*,*13*(2), 219–239.CrossRefGoogle Scholar - Baumann, F., Buchheim, C., & Ilyina, A. (2014). Lagrangean decomposition for mean-variance combinatorial optimization. In
*Combinatorial optimization—third international symposium, ISCO 2014, Lisbon, Portugal, March 5–7, 2014*. Revised Selected Papers (pp. 62–74).Google Scholar - Ben-Tal, A., Golany, B., Nemirovski, A., & Vial, J.-P. (2005). Retailer-supplier flexible commitments contracts: A robust optimization approach.
*Manufacturing & Service Operations Management*,*7*(3), 248–271.CrossRefGoogle Scholar - Ben-Tal, A., Goryashko, A., Guslitzer, E., & Nemirovski, A. (2004). Adjustable robust solutions of uncertain linear programs.
*Mathematical Programming*,*99*(2), 351–376.CrossRefGoogle Scholar - Ben-Tal, A., & Nemirovski, A. (1998). Robust convex optimization.
*Mathematics of Operations Research*,*23*(4), 769–805.CrossRefGoogle Scholar - Ben-Tal, A., & Nemirovski, A. (2000). Robust solutions of linear programming problems contaminated with uncertain data.
*Mathematical Programming*,*88*(3), 411–424. https://doi.org/10.1007/PL00011380.CrossRefGoogle Scholar - Bertsimas, D., & Dunning, I. (2014). Multistage robust mixed integer optimization with adaptive partitions.
*Operations Research*,*64*, 980–998.CrossRefGoogle Scholar - Bertsimas, D., & Georghiou, A. (2015). Design of near optimal decision rules in multistage adaptive mixed-integer optimization.
*Operations Research*,*63*(3), 610–627. https://doi.org/10.1287/opre.2015.1365.CrossRefGoogle Scholar - Bertsimas, D., & Sim, M. (2003). Robust discrete optimization and network flows.
*Mathematical Programming*,*98*(1), 49–71. https://doi.org/10.1007/s10107-003-0396-4.CrossRefGoogle Scholar - Bertsimas, D., & Sim, M. (2004). The price of robustness.
*Operations Research*,*52*(1), 35–53.CrossRefGoogle Scholar - Bertsimas, D., & Thiele, A. (2006). A robust optimization approach to inventory theory.
*Operations Research*,*54*(1), 150–168.CrossRefGoogle Scholar - Bienstock, D., & Özbay, N. (2008). Computing robust basestock levels.
*Discrete Optimization*,*5*(2), 389–414. (in Memory of George B. Dantzig).CrossRefGoogle Scholar - Billionnet, A., Costa, M., & Poirion, P. (2014). 2-Stage robust MILP with continuous recourse variables.
*Discrete Applied Mathematics*,*170*, 21–32.CrossRefGoogle Scholar - Birge, J. R., & Louveaux, F. (2011).
*Introduction to stochastic programming*. Berlin: Springer.CrossRefGoogle Scholar - Bougeret, M., Pessoa, A., & Poss, M. (2016). Robust scheduling with budgeted uncertainty.
*Discrete Applied Mathematics Conditionally*. https://hal.archives-ouvertes.fr/hal-01345283/document. - Chen, X., & Zhang, Y. (2009). Uncertain linear programs: Extended affinely adjustable robust counterparts.
*Operations Research*,*57*(6), 1469–1482.CrossRefGoogle Scholar - de Ruiter, F. J. C. T., Ben-Tal, A., Brekelmans, R., & den Hertog, D. (2017). Robust optimization of uncertain multistage inventory systems with inexact data in decision rules.
*Computational Management Science*,*14*(1), 45–66. https://doi.org/10.1007/s10287-016-0253-6.CrossRefGoogle Scholar - Garey, M. R., & Johnson, D. S. (2002).
*Computers and intractability*(Vol. 29). New York: W. H. Freeman.Google Scholar - Goh, J., & Sim, M. (2010). Distributionally robust optimization and its tractable approximations.
*Operations Research*,*58*(4–part–1), 902–917.CrossRefGoogle Scholar - Gorissen, B. L., & den Hertog, D. (2013). Robust counterparts of inequalities containing sums of maxima of linear functions.
*European Journal of Operational Research*,*227*(1), 30–43.CrossRefGoogle Scholar - Huang, C. C., & Vertinsky, W. T. Z. I. (1977). Sharp bounds on the value of perfect information.
*Operations Research*,*25*(1), 128–139.CrossRefGoogle Scholar - Kouvelis, P., & Yu, G. (2013).
*Robust discrete optimization and its applications*(Vol. 14). Berlin: Springer.Google Scholar - Kuhn, D., Wiesemann, W., & Georghiou, A. (2011). Primal and dual linear decision rules in stochastic and robust optimization.
*Mathematical Programming*,*130*, 177–209.CrossRefGoogle Scholar - Oostenbrink, J. B., Al, M. J., Oppe, M., & Rutten-van Mölken, M. P. (2008). Expected value of perfect information: An empirical example of reducing decision uncertainty by conducting additional research.
*Value in Health*,*11*(7), 1070–1080.CrossRefGoogle Scholar - Pochet, Y., & Wolsey, L. A. (1994). Polyhedra for lot-sizing with wagner-whitin costs.
*Mathematical Programming*,*67*, 297–323. https://doi.org/10.1007/BF01582225.CrossRefGoogle Scholar - Pochet, Y., & Wolsey, L. (2013).
*Production planning by mixed integer programming*. Berlin: Springer.Google Scholar - Poss, M. (2013). Robust combinatorial optimization with variable budgeted uncertainty.
*4OR*,*11*(1), 75–92. https://doi.org/10.1007/s10288-012-0217-9.CrossRefGoogle Scholar - Postek, K., & den Hertog, D. (2016). Multistage adjustable robust mixed-integer optimization via iterative splitting of the uncertainty set.
*INFORMS Journal on Computing*,*28*(3), 553–574. https://doi.org/10.1287/ijoc.2016.0696.CrossRefGoogle Scholar - Zeng, B., & Zhao, L. (2013). Solving two-stage robust optimization problems by a constraint-and-column generation method.
*Operations Research Letters*,*41*(5), 457–461.CrossRefGoogle Scholar