Annals of Operations Research

, Volume 276, Issue 1–2, pp 169–190 | Cite as

Automatic EEG classification: a path to smart and connected sleep interventions

  • Anahita Khojandi
  • Oleg ShyloEmail author
  • Maryam Zokaeinikoo
S.I.: Computational Biomedicine


We develop a random forest classifier to automatically classify brain waves into sleep stages by using the publicly available data from PhysioBank. More specifically, we use the EEG signals from a single pair of electrodes (FPz–Cz) recorded from 20 patients and evaluate the impact of data balancing and incorporating signal history on classification results. The accuracy of the model is objectively evaluated using leave-one-out cross-validation. The developed model achieves the mean accuracy of 0.74, with that of the individual sleep stages ranging from 0.65 to 0.91. Next, we leverage this online sleep scoring scheme to introduce dynamic interventions as sleep process evolves over night. We develop a semi-Markov decision process model to determine optimal intervention policies to minimize the gap between the amount of sleep experienced in different stages and predetermined targets and provide computational results.


Sleep scoring Bio-signals Random forest classifier Semi-Markov decision process 


  1. Alagoz, O., Maillart, L. M., Schaefer, A. J., & Roberts, M. S. (2004). The optimal timing of living-donor liver transplantation. Management Science, 50(10), 1420–1430.Google Scholar
  2. Ancoli-Israel, S., & Roth, T. (1999). Characteristics of insomnia in the United States: Results of the 1991 National Sleep Foundation Survey. I. Sleep, 22, S347–53.Google Scholar
  3. Ayer, T., Alagoz, O., Stout, N. K., & Burnside, E. S. (2015). Heterogeneity in women’s adherence and its role in optimal breast cancer screening policies. Management Science, 62(5), 1339–1362.Google Scholar
  4. Bajaj, V., & Pachori, R. B. (2013). Automatic classification of sleep stages based on the time-frequency image of EEG signals. Computer Methods and Programs in Biomedicine, 112(3), 320–328.Google Scholar
  5. Başar, E., Başar-Eroglu, C., Karakaş, S., & Schürmann, M. (2001). Gamma, alpha, delta, and theta oscillations govern cognitive processes. International Journal of Psychophysiology, 39(2), 241–248.Google Scholar
  6. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.Google Scholar
  7. Burrus, C. S., Gopinath, R. A., & Guo, H. (1997). Introduction to wavelets and wavelet transforms: A primer. Upper Saddle River: Prentice-Hall Inc.Google Scholar
  8. Buysse, D. J., Reynolds, C. F, I. I. I., Monk, T. H., Berman, S. R., & Kupfer, D. J. (1989). The pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Research, 28(2), 193–213.Google Scholar
  9. Cherniack, E. P. (2006). The use of alternative medicine for the treatment of insomnia in the elderly. Psychogeriatrics, 6(1), 21–30.Google Scholar
  10. Cho, Y. W., Shin, W. C., Yun, C. H., Hong, S. B., Kim, J., & Earley, C. J. (2009). Epidemiology of insomnia in Korean adults: Prevalence and associated factors. Journal of Clinical Neurology, 5(1), 20–23.Google Scholar
  11. de Gage, S. B., Moride, Y., Ducruet, T., Kurth, T., Verdoux, H., Tournier, M., et al. (2014). Benzodiazepine use and risk of Alzheimer’s disease: Case-control study. BMJ, 349, g5205.Google Scholar
  12. Doroshenkov, L. G., Konyshev, V. A., & Selishchev, S. V. (2007). Classification of human sleep stages based on EEG processing using hidden markov models. Biomedical Engineering, 41(1), 25–28.Google Scholar
  13. Ebrahimi, F., Mikaeili, M., Estrada, E., & Nazeran, H. (2008). Automatic sleep stage classification based on EEG signals by using neural networks and wavelet packet coefficients. In Engineering in medicine and biology society, 2008. EMBS 2008. 30th annual international conference of the IEEE (pp. 1151–1154). IEEE.Google Scholar
  14. Fraiwan, L., Lweesy, K., Khasawneh, N., Wenz, H., & Dickhaus, H. (2012). Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifier. Computer Methods and Programs in Biomedicine, 108(1), 10–19.Google Scholar
  15. Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1). New York: Springer.Google Scholar
  16. Geisser, S. (1993). Predictive inference (Vol. 55). Boca Raton: CRC Press.Google Scholar
  17. Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., et al. (2000). Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals. Circulation, 101(23), e215–e220.Google Scholar
  18. Güneş, S., Polat, K., & Yosunkaya, Ş. (2010). Efficient sleep stage recognition system based on EEG signal using k-means clustering based feature weighting. Expert Systems with Applications, 37(12), 7922–7928.Google Scholar
  19. Hachinski, V., Iadecola, C., Petersen, R. C., Breteler, M. M., Nyenhuis, D. L., Black, S. E., et al. (2006). National institute of neurological disorders and stroke–canadian stroke network vascular cognitive impairment harmonization standards. Stroke, 37(9), 2220–2241.Google Scholar
  20. Harmat, L., Takács, J., & Bodizs, R. (2008). Music improves sleep quality in students. Journal of Advanced Nursing, 62(3), 327–335.Google Scholar
  21. Hobson, J. A. (2005). Sleep is of the brain, by the brain and for the brain. Nature, 437(7063), 1254–1256.Google Scholar
  22. Hoddes, E., Zarcone, V., Smythe, H., Phillips, R., & Dement, W. C. (1973). Quantification of sleepiness: A new approach. Psychophysiology, 10(4), 431–436.Google Scholar
  23. Hsu, Y.-L., Yang, Y.-T., Wang, J.-S., & Hsu, C.-Y. (2013). Automatic sleep stage recurrent neural classifier using energy features of EEG signals. Neurocomputing, 104, 105–114.Google Scholar
  24. Iber, C., Ancoli-Israel, S., Chesson, A., & Quan, S. F. (2007). Authors; for the American Academy of Sleep Medicine. In The AASM manual for the scoring of sleep and associated events: Rules, terminology and technical specifications. American Academy of Sleep Medicine.Google Scholar
  25. Jo, H. G., Park, J. Y., Lee, C. K., An, S. K., & Yoo, S. K. (2010). Genetic fuzzy classifier for sleep stage identification. Computers in Biology and Medicine, 40(7), 629–634.Google Scholar
  26. Johns, M. W. (1991). A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep, 14(6), 540–545.Google Scholar
  27. Johnson, J. E. (2003). The use of music to promote sleep in older women. Journal of Community Health Nursing, 20(1), 27–35.Google Scholar
  28. Khojandi, A., Maillart, L. M., Prokopyev, O. A., Roberts, M. S., & Saba, S. F. (2018). Dynamic abandon/extract decisions for failed cardiac leads. Management Science, 64(2), 633–651.
  29. Koley, B., & Dey, D. (2012). An ensemble system for automatic sleep stage classification using single channel EEG signal. Computers in Biology and Medicine, 42(12), 1186–1195.Google Scholar
  30. Kurt, M., Denton, B. T., Schaefer, A. J., Shah, N. D., & Smith, S. A. (2011). The structure of optimal statin initiation policies for patients with type 2 diabetes. IIE Transactions on Healthcare Systems Engineering, 1(1), 49–65.Google Scholar
  31. Lai, H.-L., & Good, M. (2005). Music improves sleep quality in older adults. Journal of Advanced Nursing, 49(3), 234–244.Google Scholar
  32. Lavieri, M. S., Puterman, M. L., Tyldesley, S., & Morris, W. J. (2012). When to treat prostate cancer patients based on their PSA dynamics. IIE Transactions on Healthcare Systems Engineering, 2(1), 62–77.Google Scholar
  33. Lee-Chiong, T. (2008). Sleep medicine: Essentials and review. Oxford: Oxford University Press.Google Scholar
  34. Levin, Y. I. (1998). “Brain music” in the treatment of patients with insomnia. Neuroscience and Behavioral Physiology, 28(3), 330–335.Google Scholar
  35. Li, R. H. Y., Wing, Y. K., Ho, S. C., & Fong, S. Y. Y. (2002). Gender differences in insomniaa study in the Hong Kong Chinese population. Journal of Psychosomatic Research, 53(1), 601–609.Google Scholar
  36. Liang, S.-F., Kuo, C.-E., Hu, Y.-H., Pan, Y.-H., & Wang, Y.-H. (2012). Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models. IEEE Transactions on Instrumentation and Measurement, 61(6), 1649–1657.Google Scholar
  37. Lopez, H. H., Bracha, A. S., & Bracha, S. (2002). Evidence based complementary intervention for insomnia. Hawaii Medical Journal, 61, 162–163.Google Scholar
  38. Mai, E., & Buysse, D. J. (2008). Insomnia: Prevalence, impact, pathogenesis, differential diagnosis, and evaluation. Sleep Medicine Clinics, 3(2), 167–174.Google Scholar
  39. Morphy, H., Dunn, K. M., Lewis, M., Boardman, H. F., & Croft, P. R. (2007). Epidemiology of insomnia: A longitudinal study in a UK population. Sleep, 30(3), 274.Google Scholar
  40. Ogata, S. (1995). Human EEG responses to classical music and simulated white noise: Effects of a musical loudness component on consciousness. Perceptual and Motor Skills, 80(3), 779–790.Google Scholar
  41. Ohayon, M. M. (2002). Epidemiology of insomnia: What we know and what we still need to learn. Sleep Medicine Reviews, 6(2), 97–111.Google Scholar
  42. Özşen, S. (2013). Classification of sleep stages using class-dependent sequential feature selection and artificial neural network. Neural Computing and Applications, 23(5), 1239–1250.Google Scholar
  43. Pagel, J. F., & Parnes, B. L. (2001). Medications for the treatment of sleep disorders: An overview. Primary Care Companion to the Journal of Clinical Psychiatry, 3(3), 118.Google Scholar
  44. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.Google Scholar
  45. Pinna, G. D., Robbi, E., La Rovere, M. T., & Maestri, R. (2012). A hybrid approach for continuous detection of sleep-wakefulness fluctuations: Validation in patients with Cheyne–Stokes respiration. Journal of Sleep Research, 21(3), 342–351.Google Scholar
  46. Puterman, M. L. (1994). Markov decision processes. New York: Wiley.Google Scholar
  47. Rechtschaffen, A., & Kales, A. (1968). A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Washington: US Government Printing Office, US Public Health Service.Google Scholar
  48. Rosanova, M., Casali, A., Bellina, V., Resta, F., Mariotti, M., & Massimini, M. (2009). Natural frequencies of human corticothalamic circuits. The Journal of Neuroscience, 29(24), 7679–7685.Google Scholar
  49. Rosenberg, R. S., & Van Hout, S. (2013). The American Academy of Sleep Medicine inter-scorer reliability program: Sleep stage scoring. Journal of Clinical Sleep Medicine, 9(1), 81–87.Google Scholar
  50. Roth, T., & Ancoli-Israel, S. (1999). Daytime consequences and correlates of insomnia in the United States: Results of the 1991 National Sleep Foundation Survey II. Sleep, 22(Suppl. 2), S354–S358.Google Scholar
  51. Sanei, S., & Chambers, J. A. (2013). EEG signal processing. Hoboken: Wiley.Google Scholar
  52. Saper, C. B., Fuller, P. M., Pedersen, N. P., Lu, J., & Scammell, T. E. (2010). Sleep state switching. Neuron, 68(6), 1023–1042.Google Scholar
  53. Shechter, S. M., Bailey, M. D., Schaefer, A. J., & Roberts, M. S. (2008). The optimal time to initiate HIV therapy under ordered health states. Operations Research, 56, 20–33.Google Scholar
  54. Silber, Michael H., Ancoli-Israel, Sonia, Bonnet, Michael H., Chokroverty, Sudhansu, Grigg-Damberger, Madeleine M., Hirshkowitz, Max, et al. (2007). The visual scoring of sleep in adults. Journal of Clinical Sleep Medicine, 3(2), 121–131.Google Scholar
  55. Sinha, R. K. (2008). Artificial neural network and wavelet based automated detection of sleep spindles, REM sleep and wake states. Journal of Medical Systems, 32(4), 291–299.Google Scholar
  56. Stickgold, R., Whidbee, D., Schirmer, B., Patel, V., & Hobson, J. A. (2000). Visual discrimination task improvement: A multi-step process occurring during sleep. Journal of Cognitive Neuroscience, 12(2), 246–254.Google Scholar
  57. Tagluk, M. E., Sezgin, N., & Akin, M. (2010). Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG. Journal of Medical Systems, 34(4), 717–725.Google Scholar
  58. Tamminen, J., Payne, J. D., Stickgold, R., Wamsley, E. J., & Gaskell, M. G. (2010). Sleep spindle activity is associated with the integration of new memories and existing knowledge. The Journal of Neuroscience, 30(43), 14356–14360.Google Scholar
  59. Taylor, D. J., Lichstein, K. L., Durrence, H. H., Reidel, B. W., & Bush, A. J. (2005). Epidemiology of insomnia, depression, and anxiety. Sleep, 28(11), 1457.Google Scholar
  60. Walker, M. P., Brakefield, T., Morgan, A., Hobson, J. A., & Stickgold, R. (2002). Practice with sleep makes perfect: Sleep-dependent motor skill learning. Neuron, 35(1), 205–211.Google Scholar
  61. Xie, L., Kang, H., Xu, Q., Chen, M. J., Liao, Y., Thiyagarajan, M., et al. (2013). Sleep drives metabolite clearance from the adult brain. Science, 342(6156), 373–377.Google Scholar
  62. Yang, G., Lai, C. S. W., Cichon, J., Ma, L., Li, W., & Gan, W. (2014). Sleep promotes branch-specific formation of dendritic spines after learning. Science, 344(6188), 1173–1178.Google Scholar
  63. Yang, M. C. K., & Hursch, C. J. (1973). The use of a semi-markov model for describing sleep patterns. Biometrics, 29(4), 667–676.Google Scholar
  64. Zhao, L. (2009). Multi-state processes with duration-dependent transition intensities: Statistical methods and applications. Ph.D. Thesis, Department of Statistics and Actuarial Science-Simon Fraser University.Google Scholar
  65. Zhu, G., Li, Y., & Wen, P. P. (2014). Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal. IEEE Journal of Biomedical and Health Informatics, 18(6), 1813–1821.Google Scholar
  66. Ziv, N., Rotem, T., Arnon, Z., & Haimov, I. (2008). The effect of music relaxation versus progressive muscular relaxation on insomnia in older people and their relationship to personality traits. Journal of Music Therapy, 45(3), 360–380.Google Scholar
  67. Zoubek, L., Charbonnier, S., Lesecq, S., Buguet, A., & Chapotot, F. (2007). Feature selection for sleep/wake stages classification using data driven methods. Biomedical Signal Processing and Control, 2(3), 171–179.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Industrial and Systems EngineeringUniversity of TennesseeKnoxvilleUSA
  2. 2.Harold And Inge Marcus Department of Industrial And Manufacturing EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations