Annals of Operations Research

, Volume 271, Issue 2, pp 811–829 | Cite as

Combinatorial investigations on the maximum gap for skiving stock instances of the divisible case

  • John MartinovicEmail author
  • Guntram Scheithauer
Original Research


We consider the one-dimensional skiving stock problem which is strongly related to the dual bin packing problem: find the maximum number of objects, each having a length of at least L, that can be constructed by connecting a given supply of \( m \in \mathbb {N} \) smaller item lengths \( l_1,\ldots ,l_m \) with availabilities \( b_1,\ldots , b_m \). For this \(\mathcal {NP}\)-hard discrete optimization problem, the (additive integrality) gap, i.e., the difference between the optimal objective values of the continuous relaxation and the skiving stock problem itself, is known to be strictly less than 3 / 2 if \( l_i \mid L \) is assumed for all items, hereinafter referred to as the divisible case. Within this framework, we derive sufficient conditions that ensure the integer round-down property, i.e., a gap smaller than one, of a given instance. As a main contribution, we present improved upper bounds for the gap (of special subclasses) of the divisible case by means of combinatorial and algorithmic approaches. In a final step, possible generalizations of the introduced concepts are discussed. Altogether, the results presented in this paper give strong evidence that 22 / 21 represents the best possible upper bound for the gap of divisible case instances.


Cutting and packing Skiving stock problem Additive integrality gap Divisible case Integer round-down property 


  1. Alon, N., Azar, Y., Csirik, J., Epstein, L., Sevastianov, S. V., Vestjens, A. P. A., et al. (1998). On-line and off-line approximation algorithms for vector covering problems. Algorithmica, 12, 104–118.CrossRefGoogle Scholar
  2. Assmann, S. F. (1983). Problems in discrete applied mathematics. Ph.D. thesis, Mathematics Department, Massachusetts Institute of Technology.Google Scholar
  3. Assmann, S. F., Johnson, D. S., Kleitman, D. J., & Leung, J. Y.-T. (1984). On a dual version of the one-dimensional bin packing problem. Journal of Algorithms, 5, 502–525.CrossRefGoogle Scholar
  4. Bar-Noy, A., Ladner, R. E., & Tamir, T. (2007). Windows scheduling as a restricted version of bin packing. ACM Transactions on Algorithms, 3(3), 28.CrossRefGoogle Scholar
  5. Bruno, J. L., & Downey, P. J. (1985). Probabilistic bounds for dual bin-packing. Acta Informatica, 22, 333–345.Google Scholar
  6. Coffman, E. G., Garey, M. R., & Johnson, D. S. (1987). Bin packing with divisible item sizes. Journal of Complexity, 3(4), 406–428.CrossRefGoogle Scholar
  7. Csirik, J., Frenk, J. B. G., Galambos, G., & Rinnooy Kan, A. H. G. (1991). Probabilistic analysis of algorithms for dual bin packing problems. Journal of Algorithms, 12, 189–203.CrossRefGoogle Scholar
  8. Chen, Y., Song, X., Ouelhadj, D., & Cui, Y. (2017). A heuristic for the skiving and cutting stock problem in paper and plastic film industries. International Transactions in Operational Research. Scholar
  9. Delorme, M., Iori, M., & Martello, S. (2016). Bin packing and cutting stock problems: Mathematical models and exact algorithms. European Journal of Operational Research, 255, 1–20.CrossRefGoogle Scholar
  10. Dyckhoff, H. (1981). A new linear approach to the cutting stock problem. Operations Research, 29(6), 1092–1104.CrossRefGoogle Scholar
  11. Gilmore, P. C., & Gomory, R. E. (1961). A linear programming approach to the cutting-stock problem (Part I). Operations Research, 9, 849–859.CrossRefGoogle Scholar
  12. Johnson, M. P., Rennick, C., & Zak, E. J. (1997). Skiving addition to the cutting stock problem in the paper industry. SIAM Review, 39(3), 472–483.CrossRefGoogle Scholar
  13. Kantorovich, L. V. Mathematical methods of organising and planning production. Management Science, 6, 366–422. (1939 Russian, 1960 English).CrossRefGoogle Scholar
  14. Labbé, M., Laporte, G., & Martello, S. (1995). An exact algorithm for the dual bin packing problem. Operations Research Letters, 17, 9–18.CrossRefGoogle Scholar
  15. Marcotte, O. (1985). The cutting stock problem and integer rounding. Mathematical Programming, 33(1), 82–92.CrossRefGoogle Scholar
  16. Martinovic, J., Jorswieck, E., Scheithauer, G., & Fischer, A. (2017). Integer linear programming formulations for cognitive radio resource allocation. IEEE Wireless Communication Letters, 6(4), 494–497.CrossRefGoogle Scholar
  17. Martinovic, J., & Scheithauer, G. (2016a). Integer linear programming models for the skiving stock problem. European Journal of Operational Research, 251(2), 356–368.CrossRefGoogle Scholar
  18. Martinovic, J., & Scheithauer, G. (2016b). The proper relaxation and the proper gap of the skiving stock problem. Mathematical Methods of Operations Research, 84(3), 527–548.CrossRefGoogle Scholar
  19. Martinovic, J., & Scheithauer, G. (2016c). Integer rounding and modified integer rounding for the skiving stock problem. Discrete Optimization, 21, 118–130.CrossRefGoogle Scholar
  20. Martinovic, J., & Scheithauer, G. (2016d). New theoretical investigations on the gap of the skiving stock problem. Preprint MATH-NM-03-2016, Technische Universität Dresden.Google Scholar
  21. Martinovic, J., & Scheithauer, G. (2017a). LP-based relaxations of the skiving stock problem-Improved upper bounds for the gap. Operations Research Proceedings, 2015, 49–54.CrossRefGoogle Scholar
  22. Martinovic, J., & Scheithauer, G. (2017b). An upper bound of \( \Delta (E) < 3/2 \) for skiving stock instances of the divisible case. Discrete Applied Mathematics, 229, 161–167.CrossRefGoogle Scholar
  23. Martinovic, J., & Scheithauer, G. (2017c). Combinatorial investigations on the maximum gap for skiving stock instances of the divisible case. Preprint MATH-NM-01-2017, Technische Universität Dresden.Google Scholar
  24. Martinovic, J., Scheithauer, G., & de Carvalho, V. (2018). A comparative study of the arcflow model and the one-cut model for one-dimensional cutting stock problems. European Journal of Operational Research, 266(2), 458–471.CrossRefGoogle Scholar
  25. Nemhauser, G., & Wolsey, L. (1988). Integer and combinatorial optimization. New York: Wiley.CrossRefGoogle Scholar
  26. Peeters, M., & Degraeve, Z. (2006). Branch-and-price algorithms for the dual bin packing and maximum cardinality bin packing problem. European Journal of Operational Research, 170(2), 416–439.CrossRefGoogle Scholar
  27. Scheithauer, G. (2018). Introduction to cutting and packing optimization—Problems, modeling approaches, solution methods (1st ed., Vol. 623)., International series in operations research & management science Berlin: Springer.CrossRefGoogle Scholar
  28. Tragos, E. Z., Zeadally, S., Fragkiadakis, A. G., & Siris, V. A. (2013). Spectrum assignment in cognitive radio networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 15(3), 1108–1135.CrossRefGoogle Scholar
  29. Valério de Carvalho, J. M. (2002). LP models for bin packing and cutting stock problems. European Journal of Operations Research, 141(2), 253–273.CrossRefGoogle Scholar
  30. Vijayakumar, B., Parikh, P., Scott, R., Barnes, A., & Gallimore, J. (2013). A dual bin-packing approach to scheduling surgical cases at a publicly-funded hospital. European Journal of Operational Research, 224(3), 583–591.CrossRefGoogle Scholar
  31. Wäscher, G., Haußner, H., & Schumann, H. (2007). An improved typology of cutting and packing problems. European Journal of Operational Research, 183, 1109–1130.CrossRefGoogle Scholar
  32. Zak, E. J. (2003). The skiving stock problem as a counterpart of the cutting stock problem. International Transactions in Operational Research, 10, 637–650.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Numerical MathematicsTechnische Universität DresdenDresdenGermany

Personalised recommendations