Advertisement

\({\varvec{teaspoon}}\): solving the curriculum-based course timetabling problems with answer set programming

  • Mutsunori Banbara
  • Katsumi Inoue
  • Benjamin Kaufmann
  • Tenda Okimoto
  • Torsten Schaub
  • Takehide Soh
  • Naoyuki Tamura
  • Philipp Wanko
S.I.: PATAT 2016

Abstract

Answer Set Programming (ASP) is an approach to declarative problem solving, combining a rich yet simple modeling language with high performance solving capacities. We here develop an ASP-based approach to curriculum-based course timetabling (CB-CTT), one of the most widely studied course timetabling problems. The resulting teaspoon system reads a CB-CTT instance of a standard input format and converts it into a set of ASP facts. In turn, these facts are combined with a first-order encoding for CB-CTT solving, which can subsequently be solved by any off-the-shelf ASP systems. We establish the competitiveness of our approach by empirically contrasting it to the best known bounds obtained so far via dedicated implementations. Furthermore, we extend the teaspoon system to multi-objective course timetabling and consider minimal perturbation problems.

Keywords

Educational timetabling Course timetabling Answer set programming Multi-objective optimization Minimal perturbation problems 

Notes

Acknowledgements

Funding was provided by Japan Society for the Promotion of Science (Grant Nos. JSPS KAKENHI 15K00099, JSPS KAKENHI 16H02803) and Deutsche Forschungsgemeinschaft (Grant Nos. SCHA 550/9-2 and SCHA 550/11-1).

References

  1. Abdullah, S., Turabieh, H., McCollum, B., & McMullan, P. (2012). A hybrid metaheuristic approach to the university course timetabling problem. Journal of Heuristics, 18(1), 1–23.CrossRefGoogle Scholar
  2. Achá, R. A., & Nieuwenhuis, R. (2012). Curriculum-based course timetabling with SAT and MaxSAT. Annals of Operations Research, 218, 1–21.Google Scholar
  3. Andres, B., Kaufmann, B., Matheis, O., & Schaub T. (2012). Unsatisfiability-based optimization in clasp. In: A. Dovier & V. Santos Costa (Eds.), Technical communications of the twenty-eighth international conference on logic programming (ICLP’12), Leibniz international proceedings in informatics (LIPIcs) (Vol. 17, pp. 212–221).Google Scholar
  4. Ansótegui, C., Bonet, M., & Levy, J. (2013). SAT-based MaxSAT algorithms. Artificial Intelligence, 196, 77–105.CrossRefGoogle Scholar
  5. Banbara, M., Soh, T., Tamura, N., Inoue, K., & Schaub, T. (2013). Answer set programming as a modeling language for course timetabling. Theory and Practice of Logic Programming, 13(4–5), 783–798.CrossRefGoogle Scholar
  6. Banbara, M., Inoue, K., Kaufmann, B., Schaub, T., Soh, T., Tamura, N., et al. (2016). teaspoon: Solving the curriculum-based course timetabling problems with answer set programming. In: E. K. Burke, L. Di Gaspero, E. Özcan, B. McCollum, & A. Schaerf (Eds.), Proceedings of the 11th international conference on the practice and theory of automated timetabling (PATAT’16) (pp. 13–32).Google Scholar
  7. Baral, C. (2003). Knowledge representation, reasoning and declarative problem solving. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  8. Barták, R., Müller, T., & Rudová, H. (2004). A new approach to modeling and solving minimal perturbation problems. In K. R. Apt, F. Fages, F. Rossi, P. Szeredi, & J. Váncza (Eds.), Recent advances in constraints, joint ERCIM/CoLogNET international workshop on constraint solving and constraint logic programming (CSCLP’03) (Vol. 3010, pp. 233–249). Springer, LNCS.Google Scholar
  9. Bettinelli, A., Cacchiani, V., Roberti, R., & Paolo, Toth. (2015). An overview of curriculum-based course timetabling. TOP, 23(2), 313–349.CrossRefGoogle Scholar
  10. Biere, A., Heule, M., van Maaren, H., & Walsh, T. (Eds.). (2009). Handbook of satisfiability, frontiers in artificial intelligence and applications (Vol. 185). Clifton: IOS Press.Google Scholar
  11. Bonutti, A., De Cesco, F., Di Gaspero, L., & Schaerf, A. (2012). Benchmarking curriculum-based course timetabling: Formulations, data formats, instances, validation, visualization, and results. Annals of Operations Research, 194(1), 59–70.CrossRefGoogle Scholar
  12. Burke, E. K., & Petrovic, S. (2002). Recent research directions in automated timetabling. European Journal of Operational Research, 140(2), 266–280.CrossRefGoogle Scholar
  13. Burke, E. K., Marecek, J., Parkes, A. J., & Rudová, H. (2010a). Decomposition, reformulation, and diving in university course timetabling. Computers & Operations Research, 37(3), 582–597.CrossRefGoogle Scholar
  14. Burke, E. K., Marecek, J., Parkes, A. J., & Rudová, H. (2010b). A supernodal formulation of vertex colouring with applications in course timetabling. Annals of Operations Research, 179(1), 105–130.CrossRefGoogle Scholar
  15. Burke, E. K., Marecek, J., Parkes, A. J., & Rudová, H. (2012). A branch-and-cut procedure for the Udine course timetabling problem. Annals of Operations Research, 194(1), 71–87.CrossRefGoogle Scholar
  16. Demirovic, E., & Musliu, N. (2017). MaxSAT-based large neighborhood search for high school timetabling. Computers & OR, 78, 172–180.CrossRefGoogle Scholar
  17. Di Gaspero, L., & Schaerf, A. (2003). Multi-neighbourhood local search with application to course timetabling. In E. K. Burke & P. D. Causmaecker (Eds.) Proceedings of the 4th international conference on the practice and theory of automated timetabling (PATAT’02) (Vol. 2740, pp. 262–275). Berlin: Springer, LNCS.Google Scholar
  18. Di Gaspero, L., & Schaerf, A. (2006). Neighborhood portfolio approach for local search applied to timetabling problems. Journal of Mathematical Modelling and Algorithms, 5(1), 65–89.CrossRefGoogle Scholar
  19. Di Gaspero, L., McCollum, B., & Schaerf, A. (2007). The second international timetabling competition (ITC-2007): Curriculum-based course timetabling (track 3). Technical report, Queen’s University, Belfast, United KingdomGoogle Scholar
  20. Eén, N., & Sörensson, N. (2003). Temporal induction by incremental SAT solving. Electronic Notes in Theoretical Computer Science, 89(4), 543–560.CrossRefGoogle Scholar
  21. Ehrgott, M. (2005). Multicriteria Optimization. Berlin: Springer.Google Scholar
  22. Erdem, E., Gelfond, M., & Leone, N. (2016). Applications of ASP. AI Magazine, 37(3), 53–68.CrossRefGoogle Scholar
  23. Faber, W., Leone, N., & Pfeifer, G. (1998). Representing school timetabling in a disjunctive logic programming language. In U. Egly & H. Tompits (Eds.), Proceedings of the 13th workshop on logic programming (WLP’98) (pp. 43–52).Google Scholar
  24. Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2012). Answer set solving in practice. Synthesis lectures on artificial intelligence and machine learning. San Rafael: Morgan and Claypool Publishers.Google Scholar
  25. Gebser, M., Kaufmann, B., Otero, R., Romero, J., Schaub, T., & Wanko P. (2013). Domain-specific heuristics in answer set programming. In: M. desJardins & M. Littman (Eds.), Proceedings of the twenty-seventh national conference on artificial intelligence (AAAI’13) (pp. 350–356). AAAI Press.Google Scholar
  26. Gebser, M., Kaminski, R., Kaufmann, B., Romero, J., & Schaub, T. (2015a). Progress in clasp series 3. In F. Calimeri, G. Ianni, & M. Truszczyński (eds) Proceedings of the thirteenth international conference on logic programming and nonmonotonic reasoning (LPNMR’15) (Vol. 9345, pp. 368–383). Springe, LNAI.Google Scholar
  27. Gebser, M., Kaminski, R., Obermeier, P., & Schaub, T. (2015b). Ricochet robots reloaded: A case-study in multi-shot ASP solving. In: T. Eiter, H. Strass, M. Truszczyński, & S. Woltran (Eds.), Advances in knowledge representation, logic programming, and abstract argumentation: Essays dedicated to Gerhard Brewka on the occasion of his 60th birthday (Vol. 9060, pp. 17–32). Springer, LNAI.Google Scholar
  28. Geiger, M. J. (2012). Applying the threshold accepting metaheuristic to curriculum based course timetabling—A contribution to the second international timetabling competition ITC 2007. Annals of Operations Research, 194(1), 189–202.CrossRefGoogle Scholar
  29. Gelfond, M, & Lifschitz, V. (1988). The stable model semantics for logic programming. In Proceedings of the fifth international conference and symposium on logic programming (pp. 1070–1080). MIT Press.Google Scholar
  30. Hutter, F., Hoos, H., & Leyton-Brown, K. (2011). Sequential model-based optimization for general algorithm configuration. In Proceedings of the fifth international conference on learning and intelligent optimization (LION’11) (Vol. 6683, pp. 507–523). Springer, LNCS.Google Scholar
  31. Lach, G., & Lübbecke, M. E. (2012). Curriculum based course timetabling: New solutions to Udine benchmark instances. Annals of Operations Research, 194(1), 255–272.CrossRefGoogle Scholar
  32. Lewis, R. (2007). A survey of metaheuristic-based techniques for university timetabling problems. OR Spectrum, 30(1), 167–190.CrossRefGoogle Scholar
  33. Lü, Z., & Hao, J. K. (2010). Adaptive tabu search for course timetabling. European Journal of Operational Research, 200(1), 235–244.CrossRefGoogle Scholar
  34. Marler, R., & Arora, J. (2004). Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization, 26(6), 369–395.CrossRefGoogle Scholar
  35. Marques-Silva, J., & Planes, J. (2007). On using unsatisfiability for solving maximum satisfiability. CoRR abs/0712.1097Google Scholar
  36. McCollum, B. (2007). A perspective on bridging the gap between theory and practice in university timetabling. In EK Burke, & H Rudová (Eds.), Proceedings of the 6th international conference on the practice and theory of automated timetabling (PATAT’06) (Vol 3867, pp. 3–23). Revised Selected Papers, Springer, LNCS.Google Scholar
  37. McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A. J., et al. (2010). Setting the research agenda in automated timetabling: The second international timetabling competition. INFORMS Journal on Computing, 22(1), 120–130.CrossRefGoogle Scholar
  38. Müller, T. (2009). ITC2007 solver description: A hybrid approach. Annals of Operations Research, 172(1), 429–446.CrossRefGoogle Scholar
  39. Müller, T., Rudová, H., & Barták, R. (2005). Minimal perturbation problem in course timetabling. In E. K. Burke, & M. A. Trick (Eds.), Proceedings of the 5th international conference on the practice and theory of automated timetabling (PATAT’04) (Vol. 3616, pp. 126–146). Springer, LNCS.Google Scholar
  40. Narodytska, N., & Bacchus, F. (2014). Maximum satisfiability using core-guided MaxSAT resolution. In C. Brodley, & P. Stone (Eds.), Proceedings of the twenty-eighth national conference on artificial intelligence (AAAI’14) (pp. 2717–2723). AAAI PressGoogle Scholar
  41. Niemelä, I. (1999). Logic programs with stable model semantics as a constraint programming paradigm. Ann Mathematics and Artificial Intelligence, 25(3–4), 241–273.CrossRefGoogle Scholar
  42. Phillips, A. E., Walker, C. G., Ehrgott, M., & Ryan, D. M. (2016). Integer programming for minimal perturbation problems in university course timetabling. Annals of Operations Research, 252, 1–22.Google Scholar
  43. Rudová, H., Müller, T., & Murray, K. S. (2011). Complex university course timetabling. Journal of Scheduling, 14(2), 187–207.CrossRefGoogle Scholar
  44. Sakkout, H. E., & Wallace, M. (2000). Probe backtrack search for minimal perturbation in dynamic scheduling. Constraints, 4(5), 359–388.CrossRefGoogle Scholar
  45. Schaerf, A. (1999). A survey of automated timetabling. Artificial Intelligence Review, 13(2), 87–127.CrossRefGoogle Scholar
  46. Schwind, N., Okimoto, T., Konieczny, S., Wack, M., & Inoue, K. (2014). Utilitarian and egalitarian solutions for multi-objective constraint optimization. In Proceedings of the 26th IEEE international conference on tools with artificial intelligence (ICTAI’14), IEEE Computer Society (pp. 170–177).Google Scholar
  47. Sinz, C. (2005). Towards an optimal CNF encoding of Boolean cardinality constraints. In van Beek, P. (Ed.), Proceedings of the eleventh international conference on principles and practice of constraint programming (CP’05) (Vol. 3709, pp. 827–831). Springer, LNCS.Google Scholar
  48. Soh, T., Banbara, M., Tamura, N., & Berre, D. L. (2017). Solving multiobjective discrete optimization problems with propositional minimal model generation. In J. C. Beck (Ed.), Proceedings of the 23rd international conference on principles and practice of constraint programming (CP’17) (Vol. 10416, pp. 596–614). Springer, LNCS.Google Scholar
  49. Zivan, R., Grubshtein, A., & Meisels, A. (2011). Hybrid search for minimal perturbation in dynamic CSPs. Constraints, 16(3), 228–249.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Kobe UniversityKobeJapan
  2. 2.National Institute of InformaticsTokyoJapan
  3. 3.Universität PotsdamPotsdamGermany
  4. 4.Inria – Centre de Rennes Bretagne AtlantiqueRennesFrance
  5. 5.Tokyo Institute of TechnologyMeguro-kuJapan

Personalised recommendations