Advertisement

Search algorithms for improving the pareto front in a timetabling problem with a solution network-based robustness measure

  • Gülcin Ermis
  • Can Akkan
S.I. : PATAT 2016
  • 53 Downloads

Abstract

We develop search algorithms based on local search, and a matheuristic that solves a set of mixed integer programming models to improve the robustness of a set of solutions for an academic timetabling problem. The matheuristic uses the solution pool feature of CPLEX while solving two related MIP models iteratively. The solutions form a network (Akkan et al. in Eur J Oper Res 249(2):560–576, 2016. doi: 10.1016/j.ejor.2015.08.047), in which edges are defined by the Hamming distance between pairs of solutions. This network is used to calculate a robustness measure, where disruption of a solution is assumed to occur when the time slot to which a team had been assigned is no longer feasible for that team and the heuristic response to this disruption is choosing one of the neighbors of the disrupted solution. Considering the objective function of the timetabling problem and this robustness measure results in a bi-criteria optimization problem where the goal is to improve the Pareto front by enlarging the network. We compare the performance of the heuristics on a set of random instances and seven semesters’ actual data. These results show that some of the proposed local search algorithms and the matheuristic find high quality approximate Pareto fronts. Besides being one of the few timetabling algorithms in the literature addressing robustness, a key contribution of this research is the demonstration of the effectiveness of the matheuristic approach. By using this matheuristic approach, for any discrete optimization model that can be solved optimally or near-optimally in an acceptable time, researchers can develop a robustness improvement algorithm.

Keywords

Timetabling Matheuristics Local search Robustness Bi-criteria optimization 

References

  1. Akkan, C., & Ermis, G. (2017). Data set for a timetabling problem with a solution network-based robustness measure. https://www.researchgate.net/publication/317823811, doi: 10.13140/RG.2.2.13165.18407
  2. Akkan, C., Erdem Külünk, M., & Kocas, C. (2016). Finding robust timetables for project presentations of student teams. European Journal of Operational Research, 249(2), 560–576. doi: 10.1016/j.ejor.2015.08.047.CrossRefGoogle Scholar
  3. Bader, J., & Zitzler, E. (2011). HypE : An algorithm for fast hypervolume-based many-objective optimization. Evolutionary Computation, 19(1), 45–76.CrossRefGoogle Scholar
  4. Ball, M. O. (2011). Heuristics based on mathematical programming. Surveys in Operations Research and Management Science, 16(1), 21–38. doi: 10.1016/j.sorms.2010.07.001.CrossRefGoogle Scholar
  5. Bayliss, C., Maere, G. D., Atkin, J. A. D., & Paelinck, M. (2016). A simulation scenario based mixed integer programming approach to airline reserve crew scheduling under uncertainty. Annals of Operations Research,. doi: 10.1007/s10479-016-2174-8.Google Scholar
  6. Burke, E. K., Li, J., & Qu, R. (2012). A pareto-based search methodology for multi-objective nurse scheduling. Annals of Operations Research, 196, 91–109. doi: 10.1007/s10479-009-0590-8.CrossRefGoogle Scholar
  7. Canca, D., Barrena, E., Laporte, G., & Ortega, F. A. (2016). A short-turning policy for the management of demand disruptions in rapid transit systems. Annals of Operations Research, 246, 145–166. doi: 10.1007/s10479-014-1663-x.CrossRefGoogle Scholar
  8. Chand, S., & Wagner, M. (2015). Evolutionary many-objective optimization: A quick-start guide. Surveys in Operations Research and Management Science, 20(2), 35–42. doi: 10.1016/j.sorms.2015.08.001.CrossRefGoogle Scholar
  9. Czibula, O., Gu, H., Russell, A., & Zinder, Y. (2015). A multi-stage IP-based heuristic for class timetabling and trainer rostering. Annals of Operations Research,. doi: 10.1007/s10479-015-2090-3.Google Scholar
  10. Deb, K., & Jain, H. (2014). An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation, 18(4), 577–601. doi: 10.1109/TEVC.2013.2281535.CrossRefGoogle Scholar
  11. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.CrossRefGoogle Scholar
  12. Della Croce, F., & Salassa, F. (2014). A variable neighborhood search based matheuristic for nurse rostering problems. Annals of Operations Research, 218(1), 185–199. doi: 10.1007/s10479-012-1235-x.CrossRefGoogle Scholar
  13. Dorndorf, U., Jaehn, F., & Pesch, E. (2012). Flight gate scheduling with respect to a reference schedule. Annals of Operations Research, 194, 177–187. doi: 10.1007/s10479-010-0809-8.CrossRefGoogle Scholar
  14. Dorneles, Á. P., De Araújo, O. C. B., & Buriol, L. S. (2014). A fix-and-optimize heuristic for the high school timetabling problem. Computers and Operations Research 52(PART A), 29–38. doi: 10.1016/j.cor.2014.06.023
  15. Fonseca, C. M., & Fleming, P. J. (1993). Genetic algorithms for multiobjective optimization: formulation, disscussion and generalization. In: Proceedings of the fifth international conference on genetic algorithms, San Mateo, California, pp 416–423Google Scholar
  16. Fourman, M. (1985). Compaction of symbolic layout using genetic algorithms. In: Proceedings of the 1st international conference on genetic algorithms, pp. 141–153Google Scholar
  17. Geiger, M. J. (2007). On operators and search space topology in multi-objective flow shop scheduling. European Journal of Operational Research, 181(1), 195–206. doi: 10.1016/j.ejor.2006.06.010.CrossRefGoogle Scholar
  18. Giagkiozis, I., Purshouse, R. C., & Fleming, P. J. (2013). An overview of population-based algorithms for multi-objective optimisation. International Journal of Systems Science pp 1–28, doi: 10.1080/00207721.2013.823526
  19. Goldberg, D. E. (1989). Genetic algorithms in search. Optimization and machine learning. Boston: Addison-Wesley.Google Scholar
  20. Herroelen, W., & Leus, R. (2004). Robust and reactive project scheduling: A review and classification of procedures. IIE Transactions, 42(8), 1599–1620. doi: 10.1007/s10951-007-0010-3.Google Scholar
  21. Jain, H., & Deb, K. (2014). An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part II: Handling constraints and extending to an adaptive approach. IEEE Transactions on Evolutionary Computation, 18(4), 602–622. doi: 10.1109/TEVC.2013.2281534.CrossRefGoogle Scholar
  22. Kiefer, A., Hartl, L. F., & Schnell, A. (2016). Adaptive large neighborhood search for the curriculum-based course timetabling problem. Annals of Operations Research S.I. : PATAT 2014. doi: 10.1007/s10479-016-2151-2
  23. Maniezzo, V., Stützle, T., & Voss, S. (2009). Matheuristics: Hybridizing metaheuristics and mathematical programming. OR/CS Interface Series. Heidelberg: Springer.Google Scholar
  24. Mumford, C. L. (2010). A multiobjective framework for heavily constrained examination timetabling problems. Annals of Operations Research, 180, 3–31. doi: 10.1007/s10479-008-0490-3.CrossRefGoogle Scholar
  25. Parr, D., & Thompson, J. (2007). Solving the multi-objective nurse scheduling problem with a weighted cost function. Annals of Operations Research, 155, 279–288. doi: 10.1007/s10479-007-0202-4.CrossRefGoogle Scholar
  26. Petrovic, S., & Vanden Berghe, G. (2012). A comparison of two approaches to nurse rostering problems. Annals of Operations Research, 194, 365384. doi: 10.1007/s10479-010-0808-9.CrossRefGoogle Scholar
  27. Sabuncuoglu, I., & Goren, S. (2009). Hedging production schedules against uncertainty in manufacturing environment with a review of robustness and stability research. International Journal of Computer Integrated Manufacturing, 22(2), 138–157. doi: 10.1080/09511920802209033.CrossRefGoogle Scholar
  28. Thompson, J. M., & Dowsland, K. A. (1996). Variants of simulated annealing for the examination timetabling problem. Annals of Operations Research, 63, 105–128.CrossRefGoogle Scholar
  29. van den Broek, J. J. J., & Hurkens, C. A. J. (2012). An IP-based heuristic for the post enrolment course timetabling problem of the ITC2007. Annals of Operations Research, 194, 439–454. doi: 10.1007/s10479-010-0708-z.
  30. Wehrer, A., & Yellen, J. (2014). The design and implementation of an interactive course-timetabling system. Annals of Operations Research, 218, 327–345. doi: 10.1007/s10479-013-1384-6.CrossRefGoogle Scholar
  31. Zhang, Q., & Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 11, 712–731.CrossRefGoogle Scholar
  32. Zitzler, E. (1999). Evolutionary algorithms for multiobjective optimization: Methods and applications. PhD thesis, Share Verlag, Aachen, GermanyGoogle Scholar
  33. Zitzler, E., & Thiele, L. (1998). Multiobjective optimization using evolutionary algorithms: A comparative case study. Parallel Problem Solving from Nature—PPSN V pp 292–301. doi: 10.1007/BFb0056872
  34. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & Grunert da Fonseca, V. (2003). Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation, 7(2), 117–132.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Sabancı UniversitySchool of ManagementTuzla, IstanbulTurkey

Personalised recommendations