Annals of Operations Research

, Volume 275, Issue 1, pp 223–243 | Cite as

The sport teams grouping problem

  • Túlio A. M. ToffoloEmail author
  • Jan Christiaens
  • Frits C. R. Spieksma
  • Greet Vanden Berghe
PATAT 2016


The sport teams grouping problem (STGP) concerns the assignment of sport teams to round-robin tournaments. The objective is to minimize the total travel distance of the participating teams while simultaneously respecting fairness constraints. The STGP is an NP-Hard combinatorial optimization problem highly relevant in practice. This paper investigates the performance of some complimentary optimization approaches to the STGP. Three integer programming formulations are presented and thoroughly analyzed: two compact formulations and another with an exponential number of variables, for which a branch-and-price algorithm is proposed. Additionally, a meta-heuristic method is applied to quickly generate feasible high-quality solutions for a set of real-world instances. By combining the different approaches’ results, solutions within 1.7% of the optimum values were produced for all feasible instances. Additionally, to support further research, the considered STGP instances and corresponding solutions files were shared online.


Sport teams grouping problem Branch-and-price Column generation Decomposition strategies Integer programming Meta-heuristic 



Work supported by the Belgian Science Policy Office (BELSPO) in the Inter-university Attraction Pole COMEX ( and by the Leuven Mobility Research Centre (L-Mob). Editorial support provided by Luke Connolly, KU Leuven. Additionally, we would like to thank Movetex, in particular Dieter De Naeyer and Ken De Norre–De Groof, for the insightful discussions concerning the problem and for making the real-world instances available.


  1. Achterberg, T., Koch, T., & Martin, A. (2005). Branching rules revisited. Operations Research Letters, 33(1), 42–54.Google Scholar
  2. Alarcón, F., Durán, G., Guajardo, M., Miranda, J., Muñoz, H., Ramírez, L., et al. (2017). Operations research transforms the scheduling of chilean soccer leagues and south american world cup qualifiers. Interfaces, 47(1), 52–69.Google Scholar
  3. Ales, Z., Knippel, A., & Pauchet, A. (2016). Polyhedral combinatorics of the k-partitioning problem with representative variables. Discrete Applied Mathematics, 211(c), 1–14.Google Scholar
  4. Anagnostopoulos, A., Michel, L., Van Hentenryck, P., & Vergados, Y. (2006). A simulated annealing approach to the traveling tournament problem. Journal of Scheduling, 9(2), 177–193.Google Scholar
  5. Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., & Vance, P. H. (1998). Branch-and-price: Column generation for solving huge integer programs. Operations Research, 46, 316–329.Google Scholar
  6. Briskorn, D., Drexl, A., & Spieksma, F. C. R. (2010). Round robin tournaments and three index assignments. 4OR, 8(4), 365–374.Google Scholar
  7. Carvalho, M. A. M. D., & Lorena, L. A. N. (2012). New models for the mirrored traveling tournament problem. Computers and Industrial Engineering, 63(4), 1089–1095.Google Scholar
  8. Christiaens, J., & Vanden Berghe, G. (2016). A fresh ruin & recreate implementation for the capacitated vehicle routing problem. Technical report, KU Leuven, Belgium.Google Scholar
  9. Dantzig, G. B., & Wolfe, P. (1960). Decomposition principle for linear programs. Operations Research, 8(1), 101–111.Google Scholar
  10. Di Gaspero, L., & Schaerf, A. (2007). A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics, 13(2), 189–207.Google Scholar
  11. Easton, K., Nemhauser, G., & Trick, M. (2001). The traveling tournament problem description and benchmarks. In T. Walsh (Ed.), Principles and Practice of Constraint Programming—CP 2001: 7th International Conference, CP 2001 Paphos, Cyprus, 2001 Proceedings (pp. 580–584). Berlin, Heidelberg: Springer.Google Scholar
  12. Goossens, D., & Spieksma, F. (2009). Scheduling the belgian soccer league. Interfaces, 39(2), 109–118.Google Scholar
  13. Goossens, D., & Spieksma, F. (2014). Indoor football scheduling. In E. Özcan, E. Burke, & B. McCollum (Eds.), Proceedings of the 10th International Conference on the Practice and Theory of Automated Timetabling (pp. 167–178), PATAT.Google Scholar
  14. Goossens, D. R., & Spieksma, F. C. R. (2012). Soccer schedules in europe: An overview. Journal of Scheduling, 15(5), 641–651.Google Scholar
  15. Januario, T., Urrutia, S., Ribeiro, C. C., & De Werra, D. (2016). Edge coloring: A natural model for sports scheduling. European Journal of Operational Research, 254(1), 1–8.Google Scholar
  16. Ji, X., & Mitchell, J. E. (2007). Branch-and-price-and-cut on the clique partitioning problem with minimum clique size requirement. Discrete Optimization, 4, 87–102.Google Scholar
  17. Kendall, G., Knust, S., Ribeiro, C. C., & Urrutia, S. (2010). Scheduling in sports: An annotated bibliography. Computers and Operations Research, 37(1), 1–19.Google Scholar
  18. Knust, S. (2010). Scheduling non-professional table-tennis leagues. European Journal of Operational Research, 200(2), 358–367.Google Scholar
  19. Labbé, M., & Özsoy, F. A. (2010). Size-constrained graph partitioning polytopes. Discrete Mathematics, 310(24), 3473–3493.Google Scholar
  20. Lübbecke, M. E., & Desrosiers, J. (2005). Selected topics in column generation. Operations Research, 53(6), 1007–1023.Google Scholar
  21. Mehrotra, A., & Trick, M. A. (1998). Cliques and clustering: A combinatorial approach. Operations Research Letters, 22(1), 1–12.Google Scholar
  22. Nemhauser, G. L., & Trick, M. A. (1998). Scheduling a major college basketball conference. Operations Research, 46(1), 1–8.Google Scholar
  23. Ribeiro, C. C. (2012). Sports scheduling: Problems and applications. International Transactions in Operational Research, 19, 201–226.Google Scholar
  24. Schönberger, J., Mattfeld, D., & Kopfer, H. (2000). Automated timetable generation for rounds of a table-tennis league. In Proceedings of the 2000 Congress on Evolutionary Computation (pp. 277–284).Google Scholar
  25. Schönberger, J., Mattfeld, D., & Kopfer, H. (2004). Memetic algorithm timetabling for non-commercial sport leagues. European Journal of Operational Research, 153(1), 102–116.Google Scholar
  26. Sørensen, M. M. (2004). New facets and a branch-and-cut algorithm for the weighted clique problem. European Journal of Operational Research, 154(1), 57–70.Google Scholar
  27. Toffolo, T. A. M., Wauters, T., Van Malderen, S., & Vanden Berghe, G. (2016). Branch-and-bound with decomposition-based lower bounds for the traveling umpire problem. European Journal of Operational Research, 250(3), 737–744.Google Scholar
  28. Trick, M.A., & Yildiz, H. (2007). Bender’s cuts guided large neighborhood search for the traveling umpire problem. In P. Van Hentenryck & L. Wolsey (Eds.), Number 4510 in Lecture Notes in Computer Science (pp. 332–345), Springer.Google Scholar
  29. Trick, M. A., & Yildiz, H. (2011). Benders’ cuts guided large neighborhood search for the traveling umpire problem. Naval Research Logistics (NRL), 58(8), 771–781.Google Scholar
  30. Trick, M. A., Yildiz, H., & Yunes, T. (2012). Scheduling major league baseball umpires and the traveling umpire problem. Interfaces, 42(3), 232–244.Google Scholar
  31. Uthus, D. C., Riddle, P. J., & Guesgen, H. W. (2011). Solving the traveling tournament problem with iterative-deepening. Journal of Scheduling, 15(5), 601–614.Google Scholar
  32. Vanderbeck, F., & Wolsey, L. (2010). Reformulation and decomposition of integer. In M. Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, & L. A. Wolsey (Eds.), 50 years of integer programming 1958–2008 (pp. 431–502). Berlin: Springer.Google Scholar
  33. Xue, L., Luo, Z., & Lim, A. (2015). Two exact algorithms for the traveling umpire problem. European Journal of Operational Research, 243(3), 932–943.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Túlio A. M. Toffolo
    • 1
    • 3
    Email author
  • Jan Christiaens
    • 1
  • Frits C. R. Spieksma
    • 2
  • Greet Vanden Berghe
    • 1
  1. 1.Department of Computer Science, CODeS and imecKU LeuvenGentBelgium
  2. 2.Faculty of Economics and Business, ORSTATKU LeuvenLeuvenBelgium
  3. 3.Department of ComputingFederal University of Ouro PretoOuro PretoBrazil

Personalised recommendations