Annals of Operations Research

, Volume 269, Issue 1–2, pp 641–666 | Cite as

Efficiency analysis of non-homogeneous parallel sub-unit systems for the performance measurement of higher education

  • Sanjeet SinghEmail author
  • Prabhat Ranjan


Conventional Data Envelopment Analysis (DEA) models focus only on initial inputs and final outputs for efficiency evaluation. Thus, these models treat the production process as a ‘black box’, i.e., they do not take into account how exactly inputs are related to outputs. Various models that came later take care of internal processes of DMU. The existing models of internal processes for parallel sub-units consist of three stages: the first stage calculates the relative weights of sub-units, the second stage calculates the efficiencies of sub-units, and in the third stage efficiencies of sub-units are aggregated as the efficiency of DMU. It is observed that when existing models of internal processes are applied to non-homogeneous parallel sub-units, in the first stage, the weight assigned to the maximum efficient sub-unit is one and to other sub-units is zero. This implies that the efficiency of a DMU is equal to the maximum of efficiencies of its sub-units indicating that the efficiency of a DMU is not sensitive to the efficiencies of sub-units other than the sub-unit with maximum efficiency. This paper proposes a single stage DEA approach where the efficiency of a DMU and its sub-units can be measured simultaneously. The advantage of the proposed approach is that the efficiency of a DMU is sensitive to the changes in the efficiency of its sub-units, and weights of sub-units can be assigned a priori by the decision maker. The development of the proposed approach is inspired from the growing interest in evaluating efficiency of higher education system in India. In the proposed application, states are considered as DMUs and universities, colleges and stand-alone institutions are taken as three non-homogeneous parallel sub-units of DMUs.


DEA Efficiency Sub-unit Non-homogeneous parallel sub-units Higher education 



The authors wish to express their sincere gratitude to two anonymous reviewers and GE for their valuable comments and suggestions which have significantly improved the quality of the paper.


  1. Abbott, M., & Doucouliagos, C. (2003). The efficiency of Australian universities: A data envelopment analysis. Economics of Education Review, 22(1), 89–97. doi: 10.1016/S0272-7757(01)00068-1.CrossRefGoogle Scholar
  2. Agarwal, S., Yadav, S. P., & Singh, S. P. (2010). DEA based estimation of the technical efficiency of state transport undertakings in India. Opsearch, 47(3), 216–230. doi: 10.1007/s12597-011-0035-4.CrossRefGoogle Scholar
  3. Agasisti, T., & Bianco, A. D. (2006). Data envelopment analysis to the Italian university system: Theoretical issues and policy implications. International Journal of Business Performance Management, 8(4), 344–367. doi: 10.1504/IJBPM.2006.009613.CrossRefGoogle Scholar
  4. Agasisti, T., & Johnes, G. (2009). Beyond frontiers: Comparing the efficiency of higher education decision-making units across more than one country. Education Economics, 17(1), 59–79. doi: 10.1080/09645290701523291.CrossRefGoogle Scholar
  5. Ahn, T., Charnes, A., & Cooper, W. W. (1988). Some statistical and DEA evaluations of relative efficiencies of public and private institutions of higher learning. Socio-Economic Planning Sciences, 22(6), 259–269. doi: 10.1016/0038-0121(88)90008-0.CrossRefGoogle Scholar
  6. AICTE. (2016). All India Council for Technical Education. Accessed 27 July 2016.
  7. Andersen, P., & Petersen, N. C. (1993). A procedure for ranking efficient units in data envelopment analysis. Management Science, 39(10), 1261–1264. doi: 10.1287/mnsc.39.10.1261.CrossRefGoogle Scholar
  8. Arcelus, F. J., & Coleman, D. F. (1997). An efficiency review of university departments. International Journal of Systems Science, 28(7), 721–729. doi: 10.1080/00207729708929431.CrossRefGoogle Scholar
  9. Athanassopoulos, A. D., & Shale, E. (1997). Assessing the comparative efficiency of higher education institutions in the UK by the means of data envelopment analysis. Education Economics, 5(2), 117–134. doi: 10.1080/09645299700000011.CrossRefGoogle Scholar
  10. Avkiran, N. K. (2001). Investigating technical and scale efficiencies of Australian Universities through data envelopment analysis. Socio-Economic Planning Sciences, 35(1), 57–80. doi: 10.1016/S0038-0121(00)00010-0.CrossRefGoogle Scholar
  11. Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078–1092. doi: 10.1287/mnsc.30.9.1078.CrossRefGoogle Scholar
  12. Banker, R. D., & Thrall, R. M. (1992). Estimation of returns to scale using data envelopment analysis. European Journal of Operational Research, 62(1), 74–84. doi: 10.1016/0377-2217(92)90178-C.CrossRefGoogle Scholar
  13. Beasley, J. E. (1990). Comparing university departments. Omega, 18(2), 171–183. doi: 10.1016/0305-0483(90)90064-G.CrossRefGoogle Scholar
  14. Beasley, J. E. (1995). Determining teaching and research efficiencies. Journal of the Operational Research Society, 46(4), 441–452. doi: 10.1057/jors.1995.63.CrossRefGoogle Scholar
  15. Bessent, A. M., & Bessent, E. W. (1980). Determining the comparative efficiency of schools through data envelopment analysis. Educational Administration Quarterly, 16(2), 57–75. doi: 10.1177/0013161X8001600207.CrossRefGoogle Scholar
  16. Bessent, A. M., Bessent, E. W., Charnes, A., Cooper, W. W., & Thorogood, N. C. (1983). Evaluation of educational program proposals by means of DEA. Educational Administration Quarterly, 19(2), 82–107. doi: 10.1177/0013161X83019002006.CrossRefGoogle Scholar
  17. Bhattacharyya, A., & Chakraborty, S. (2014). A DEA-TOPSIS-based approach for performance evaluation of Indian technical institutes. Decision Science Letters, 3(3), 397–410.CrossRefGoogle Scholar
  18. Bougnol, M.-L., & Dulá, J. H. (2006). Validating DEA as a ranking tool: An application of DEA to assess performance in higher education. Annals of Operations Research, 145(1), 339–365. doi: 10.1007/s10479-006-0039-2.CrossRefGoogle Scholar
  19. Breu, T. M., & Raab, R. L. (1994). Efficiency and perceived quality of the nation’s “top 25” National Universities and National Liberal Arts Colleges: An application of data envelopment analysis to higher education. Socio-Economic Planning Sciences, 28(1), 33–45. doi: 10.1016/0038-0121(94)90023-X.CrossRefGoogle Scholar
  20. Castelli, L., Pesenti, R., & Ukovich, W. (2004). DEA-like models for the efficiency evaluation of hierarchically structured units. European Journal of Operational Research, 154(2), 465–476. doi: 10.1016/S0377-2217(03)00182-6.CrossRefGoogle Scholar
  21. Castelli, L., Pesenti, R., & Ukovich, W. (2010). A classification of DEA models when the internal structure of the Decision Making Units is considered. Annals of Operations Research, 173(1), 207–235. doi: 10.1007/s10479-008-0414-2.CrossRefGoogle Scholar
  22. Charnes, A., Cooper, W., Golany, B., Seiford, L., & Stutz, J. (1985). Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions. Journal of Econometrics, 30(1–2), 91–107. doi: 10.1016/0304-4076(85)90133-2.CrossRefGoogle Scholar
  23. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444. doi: 10.1016/0377-2217(78)90138-8.CrossRefGoogle Scholar
  24. Charnes, A., Cooper, W. W., & Rhodes, E. (1981). Evaluating program and managerial efficiency: An application of data envelopment analysis to program follow through. Management Science, 27(6), 668–697. doi: 10.1287/mnsc.27.6.668.CrossRefGoogle Scholar
  25. Chen, W., Gai, Y., & Gupta, P. (2017). Efficiency evaluation of fuzzy portfolio in different risk measures via DEA. Annals of Operations Research. doi: 10.1007/s10479-017-2411-9.
  26. Chen, Y., Cook, W. D., Li, N., & Zhu, J. (2009). Additive efficiency decomposition in two-stage DEA. European Journal of Operational Research, 196(3), 1170–1176. doi: 10.1016/j.ejor.2008.05.011.CrossRefGoogle Scholar
  27. Chu Ng, Y., & Li, S. K. (2000). Measuring the research performance of chinese higher education institutions: An application of data envelopment analysis. Education Economics, 8(2), 139–156. doi: 10.1080/096452900410712.CrossRefGoogle Scholar
  28. Colbert, A., Levary, R. R., & Shaner, M. C. (2000). Determining the relative efficiency of MBA programs using DEA. European Journal of Operational Research, 125(3), 656–669. doi: 10.1016/S0377-2217(99)00275-1.CrossRefGoogle Scholar
  29. Cook, W. D., Hababou, M., & Tuenter, H. J. H. (2000). Multicomponent efficiency measurement and shared inputs in data envelopment analysis: An application to sales and service performance in bank branches. Journal of Productivity Analysis, 14(3), 209–224. doi: 10.1023/A:1026598803764.CrossRefGoogle Scholar
  30. Cook, W. D., Harrison, J., Imanirad, R., Rouse, P., & Zhu, J. (2013). Data envelopment analysis with nonhomogeneous DMUs. Operations Research, 61(3), 666–676. doi: 10.1287/opre.2013.1173.CrossRefGoogle Scholar
  31. Debnath, R. M., & Shankar, R. (2009). Assessing performance of management institutions. The TQM Journal, 21(1), 20–33. doi: 10.1108/17542730910924727.CrossRefGoogle Scholar
  32. Du, J., Chen, Y., & Huo, J. (2015a). DEA for non-homogenous parallel networks. Omega, 56, 122–132. doi: 10.1016/
  33. Du, J., Zhu, J., Cook, W. D., & Huo, J. (2015b). DEA models for parallel systems: Game-theoretic approaches. Asia-Pacific Journal of Operational Research, 32(2), 1550008. doi: 10.1142/S0217595915500086.
  34. Fragkiadakis, G., Doumpos, M., Zopounidis, C., & Germain, C. (2016). Operational and economic efficiency analysis of public hospitals in Greece. Annals of Operations Research, 247(2), 787–806. doi: 10.1007/s10479-014-1710-7.CrossRefGoogle Scholar
  35. Gong, Y., Zhu, J., Chen, Y., & Cook, W. D. (2016). DEA as a tool for auditing: Application to Chinese manufacturing industry with parallel network structures. Annals of Operations Research. doi: 10.1007/s10479-016-2197-1.
  36. Gourishankar, V., & Lokachari, P. S. (2012). Benchmarking educational development efficiencies of the Indian states: A DEA approach. International Journal of Educational Management, 26(1), 99–130. doi: 10.1108/09513541211194400.Google Scholar
  37. Hailu, K. B., & Tone, K. (2017). Setting handicaps to industrial sectors in DEA illustrated by Ethiopian industry. Annals of Operations Research, 248(1–2), 189–207. doi: 10.1007/s10479-016-2225-1.CrossRefGoogle Scholar
  38. Imanirad, R., Cook, W. D., & Zhu, J. (2013). Partial input to output impacts in DEA: Production considerations and resource sharing among business subunits. Naval Research Logistics (NRL), 60(3), 190–207. doi: 10.1002/nav.21528.CrossRefGoogle Scholar
  39. Johnes, G., & Johnes, J. (1993). Measuring the research performance of UK economics departments: An application of data envelopment analysis. Oxford Economic Papers, 45(2), 332–47.CrossRefGoogle Scholar
  40. Johnes, J. (2006a). Measuring teaching efficiency in higher education: An application of data envelopment analysis to economics graduates from UK Universities 1993. European Journal of Operational Research, 174(1), 443–456. doi: 10.1016/j.ejor.2005.02.044.CrossRefGoogle Scholar
  41. Johnes, J. (2006b). Data envelopment analysis and its application to the measurement of efficiency in higher education. Economics of Education Review, 25(3), 273–288. doi: 10.1016/j.econedurev.2005.02.005.CrossRefGoogle Scholar
  42. Johnes, J., & Yu, L. (2008). Measuring the research performance of Chinese higher education institutions using data envelopment analysis. China Economic Review, 19(4), 679–696. doi: 10.1016/j.chieco.2008.08.004.CrossRefGoogle Scholar
  43. Joumady, O., & Ris, C. (2005). Performance in European higher education: A non-parametric production frontier approach. Education Economics, 13(2), 189–205. doi: 10.1080/09645290500031215.CrossRefGoogle Scholar
  44. Kao, C. (2009a). Efficiency decomposition in network data envelopment analysis: A relational model. European Journal of Operational Research, 192(3), 949–962. doi: 10.1016/j.ejor.2007.10.008.CrossRefGoogle Scholar
  45. Kao, C. (2009b). Efficiency measurement for parallel production systems. European Journal of Operational Research, 196(3), 1107–1112. doi: 10.1016/j.ejor.2008.04.020.CrossRefGoogle Scholar
  46. Kao, C., & Chi Yang, Y. (1992). Reorganization of forest districts via efficiency measurement. European Journal of Operational Research, 58(3), 356–362. doi: 10.1016/0377-2217(92)90066-I.CrossRefGoogle Scholar
  47. Kao, C., & Hung, H.-T. (2008a). Efficiency analysis of university departments: An empirical study. Omega, 36(4), 653–664. doi: 10.1016/
  48. Kao, C., & Hwang, S.-N. (2008b). Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. European Journal of Operational Research, 185(1), 418–429. doi: 10.1016/j.ejor.2006.11.041.
  49. Kocher, M. G., Luptacik, M., & Sutter, M. (2006). Measuring productivity of research in economics: A cross-country study using DEA. Socio-Economic Planning Sciences, 40(4), 314–332. doi: 10.1016/j.seps.2005.04.001.CrossRefGoogle Scholar
  50. Kumar, V., Maurya, V., & S., S. K., (2011). Comparing the Technical Efficiency of Indian Banks Operating Abroad and Foreign Banks Operating in India: A Stochastic Output Distance Function Approach. Reserve Bank of India Occasional Papers, 32(1), 1–23.Google Scholar
  51. Lalvani, M., Hajra, K. S., & Pazhayathodi, B. (2009). Introducing expenditure quality in intergovernmental transfers: A triple-E framework. Mumbai: Deaprtment of Economic Analysis and Policy, Reserve Bank of India.Google Scholar
  52. Liu, J. S., Lu, L. Y. Y., Lu, W.-M., & Lin, B. J. Y. (2013). A survey of DEA applications. Omega, 41(5), 893–902. doi: 10.1016/ Scholar
  53. Lozano, S. (2015a). A joint-inputs Network DEA approach to production and pollution-generating technologies. Expert Systems with Applications, 42(21), 7960–7968. doi: 10.1016/j.eswa.2015.06.023.
  54. Lozano, S. (2015b). Technical and environmental efficiency of a two-stage production and abatement system. Annals of Operations Research. doi: 10.1007/s10479-015-1933-2.
  55. McMillan, M. L., & Datta, D. (1998). The relative efficiencies of Canadian Universities: A DEA perspective. Canadian Public Policy/Analyse de Politiques, 24(4), 485–511. doi: 10.2307/3552021.CrossRefGoogle Scholar
  56. MHRD. (2014). Analysis of budgeted expenditure on education 2010-11 to 2012-13. New Delhi: Department of Higher Education, Ministry of Human Resource Development, Government of India.Google Scholar
  57. MHRD. (2015). All India Survey on Higher Education 2012-13. New Delhi: Department of Higher Education, Ministry of Human Resource Development, Government of India.Google Scholar
  58. NIRF. (2015). National Institutional Ranking Framework, Ministry of Human Resource Development, Government of India. Accessed 17 February 2017.
  59. Ray, S. C. (2007). Are some Indian banks too large? An examination of size efficiency in Indian banking. Journal of Productivity Analysis, 27(1), 41–56. doi: 10.1007/s11123-006-0022-6.CrossRefGoogle Scholar
  60. Ray, S. C., & Ghose, A. (2014). Production efficiency in Indian agriculture: An assessment of the post green revolution years. Omega, 44, 58–69. doi: 10.1016/ Scholar
  61. Ray, S. C., & Jeon, Y. (2008). Reputation and efficiency: A non-parametric assessment of America’s top-rated MBA programs. European Journal of Operational Research, 189(1), 245–268. doi: 10.1016/j.ejor.2007.03.045.CrossRefGoogle Scholar
  62. Reserve Bank of India. (2008). Efficiency, productivity and soundness of the banking sector. Report on currency and finance 2006-08 (Vol. II). Mumbai.Google Scholar
  63. Rouyendegh, B. D., Oztekin, A., Ekong, J., & Dag, A. (2016). Measuring the efficiency of hospitals: A fully-ranking DEA-FAHP approach. Annals of Operations Research. doi: 10.1007/s10479-016-2330-1.
  64. Ruiz, J. L., Segura, J. V., & Sirvent, I. (2015). Benchmarking and target setting with expert preferences: An application to the evaluation of educational performance of Spanish universities. European Journal of Operational Research, 242(2), 594–605. doi: 10.1016/j.ejor.2014.10.014.CrossRefGoogle Scholar
  65. Sahoo, B. K., Singh, R., Mishra, B., & Sankaran, K. (2017). Research productivity in management schools of India during 1968–2015: A directional benefit-of-doubt model analysis. Omega, 66, 118–139. doi: 10.1016/ Scholar
  66. Sarrico, C. S., & Dyson, R. G. (2000). Using DEA for planning in UK universities—An institutional perspective. Journal of the Operational Research Society, 51(7), 789–800. doi: 10.1057/palgrave.jors.2600949.Google Scholar
  67. Sarrico, C. S., Hogan, S. M., Dyson, R. G., & Athanassopoulos, A. D. (1997). Data envelopment analysis and university selection. Journal of the Operational Research Society, 48(12), 1163–1177. doi: 10.1057/palgrave.jors.2600475.CrossRefGoogle Scholar
  68. Sexton, T. R., Silkman, R. H., & Hogan, A. J. (1986). Data envelopment analysis: Critique and extensions. New Directions for Program Evaluation, 1986(32), 73–105. doi: 10.1002/ev.1441.CrossRefGoogle Scholar
  69. Sinuany-Stern, Z., Mehrez, A., & Barboy, A. (1994). Academic departments efficiency via DEA. Computers & Operations Research, 21(5), 543–556. doi: 10.1016/0305-0548(94)90103-1.CrossRefGoogle Scholar
  70. Sunitha, S., & Duraisamy, M. (2013). Human capital and development. In N. Siddharthan & K. Narayanan (Eds.), Measuring efficiency of technical education institutions in Kerala using data envelopment analysis (1st ed., pp. 129–145). New Delhi: Springer India. doi: 10.1007/978-81-322-0857-0_8.Google Scholar
  71. Takamura, Y., & Tone, K. (2003). A comparative site evaluation study for relocating Japanese government agencies out of Tokyo. Socio-Economic Planning Sciences, 37(2), 85–102. doi: 10.1016/S0038-0121(02)00049-6.CrossRefGoogle Scholar
  72. Thanassoulis, E., Kortelainen, M., Johnes, G., & Johnes, J. (2011). Costs and efficiency of higher education institutions in England: A DEA analysis. Journal of the Operational Research Society, 62(7), 1282–1297. doi: 10.1057/jors.2010.68.CrossRefGoogle Scholar
  73. Thompson, R. G., Singleton, F. D., Thrall, R. M., & Smith, B. A. (1986). Comparative site evaluations for locating a high-energy physics lab in Texas. Interfaces, 16(6), 35–49. doi: 10.1287/inte.16.6.35.CrossRefGoogle Scholar
  74. Tomkins, C., & Green, R. (1988). An experiment in the use of data envelopment analysis for evaluating the efficiency of UK university departments of accounting. Financial Accountability and Management, 4(2), 147–164. doi: 10.1111/j.1468-0408.1988.tb00296.x.CrossRefGoogle Scholar
  75. Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 130(3), 498–509. doi: 10.1016/S0377-2217(99)00407-5.CrossRefGoogle Scholar
  76. Tone, K., & Sahoo, B. K. (2005). Evaluating cost efficiency and returns to scale in the Life Insurance Corporation of India using data envelopment analysis. Socio-Economic Planning Sciences, 39(4), 261–285. doi: 10.1016/j.seps.2004.06.001.CrossRefGoogle Scholar
  77. Tsai, P. F., & Mar Molinero, C. (2002). A variable returns to scale data envelopment analysis model for the joint determination of efficiencies with an example of the UK health service. European Journal of Operational Research, 141(1), 21–38. doi: 10.1016/S0377-2217(01)00223-5.CrossRefGoogle Scholar
  78. Tsolas, I. E., & Charles, V. (2015). Incorporating risk into bank efficiency: A satisficing DEA approach to assess the Greek banking crisis. Expert Systems with Applications, 42(7), 3491–3500. doi: 10.1016/j.eswa.2014.12.033.CrossRefGoogle Scholar
  79. Tyagi, P., Yadav, S. P., & Singh, S. P. (2009). Relative performance of academic departments using DEA with sensitivity analysis. Evaluation and Program Planning, 32(2), 168–177. doi: 10.1016/j.evalprogplan.2008.10.002.CrossRefGoogle Scholar
  80. UGC. (2013). University Grants Commission (Mandatory Assessment and Accreditation of Higher Educational Institutions), Regulations, 2012. The Gazette of India (Vol. 2013, Issue 3, Part III-Section 4, pp. 115–120). New Delhi.Google Scholar
  81. UNESCO. (2014). Higher education in Asia: Expanding out. UNESCO Institute for Statistics: Expanding Up.Google Scholar
  82. Yang, Y., Ma, B., & Koike, M. (2000). Efficiency-measuring DEA model for production system with k independent subsystems. Journal of the Operations Research Society of Japan, 43(3), 343–354.CrossRefGoogle Scholar
  83. Zhao, L., Zha, Y., Wei, K., & Liang, L. (2016). A target-based method for energy saving and carbon emissions reduction in China based on environmental data envelopment analysis. Annals of Operations Research. doi: 10.1007/s10479-016-2163-y.

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Operations Management GroupIndian Institute of Management CalcuttaJoka, KolkataIndia

Personalised recommendations