Annals of Operations Research

, Volume 272, Issue 1–2, pp 187–216 | Cite as

Simulated annealing approach to nurse rostering benchmark and real-world instances

  • Frederik Knust
  • Lin Xie
Advances in Theoretical and Applied Combinatorial Optimization


The nurse rostering problem, which addresses the task of assigning a given set of activities to nurses without violating any complex rules, has been studied extensively in the last 40 years. However, in a lot of hospitals the schedules are still created manually, as most of the research has not produced methods and software suitable for a practical application. This paper introduces a novel, flexible problem model, which can be categorized as ASBN|RVNTO|PLG. Two solution methods are implemented, including a MIP model to compute good bounds for the test instances and a heuristic method using the simulated annealing algorithm for practical use. Both methods are tested on the available benchmark instances and on the real-world data. The mathematical model and solution methods are integrated into a state-of-the-art duty rostering software, which is primarily used in Germany and Austria.


Nurse rostering problem Flexible model \(\alpha |\beta |\gamma \) notation Simulated annealing Mixed integer programming Real-world data Duty rostering software 



We would like to thank Connext Communication GmbH for providing us with the real-world instances and the use of their software, Vivendi PEP, to accomplish this paper.


  1. Aickelin, U., & Dowsland, K. (2008). Exploiting problem structure in a genetic algorithm approach to a nurse rostering problem. 3(3):139–153 (arXiv preprint arXiv:0802.2001).
  2. auf’m Hofe, H. M. (2001). Solving rostering tasks by generic methods for constraint optimization. International Journal of Foundations of Computer Science, 12(05), 671–693.CrossRefGoogle Scholar
  3. Bai, R., Burke, E. K., Kendall, G., Li, J., & McCollum, B. (2010). A hybrid evolutionary approach to the nurse rostering problem. IEEE Transactions on Evolutionary Computation, 14(4), 580–590.CrossRefGoogle Scholar
  4. BDI. (2013). Die Gesundheitswirtschaft ein stabiler Wachstumsfaktor für Deutschlands Zukunft.
  5. Bilgin, B., De Causmaecker, P., Rossie, B., & Vanden Berghe, G. (2012). Local search neighbourhoods for dealing with a novel nurse rostering model. Annals of Operations Research, 194(1), 33–57.CrossRefGoogle Scholar
  6. Burke, E., De Causmaecker, P., & Vanden Berghe, G. (1998). A hybrid tabu search algorithm for the nurse rostering problem. In Asia-Pacific Conference on Simulated Evolution and Learning, Springer (pp. 187–194).Google Scholar
  7. Burke, E. K., De Causmaecker, P., & Vanden Berghe, G. (2004a) Novel meta-heuristic approaches to nurse rostering problems in belgian hospitals Problems in Belgian Hospitals. In J. Leung (Ed.) Handbook of scheduling: algorithms, models and performance analysis. CiteseerGoogle Scholar
  8. Burke, E. K., Causmaecker, P. D., Petrovic, S., & Vanden Berghe, G. (2006). Metaheuristics for handling time interval coverage constraints in nurse scheduling. Applied Artificial Intelligence, 20(9), 743–766.CrossRefGoogle Scholar
  9. Burke, E. K., De Causmaecker, P., Vanden Berghe, G., & Van Landeghem, H. (2004b). The state of the art of nurse rostering. Journal of Scheduling, 7(6), 441–499.CrossRefGoogle Scholar
  10. Burke, E., Cowling, P., De Causmaecker, P., & Vanden Berghe, G. (2001). A memetic approach to the nurse rostering problem. Applied Intelligence, 15(3), 199–214.CrossRefGoogle Scholar
  11. Burke, E. K., & Curtois, T. (2014). New approaches to nurse rostering benchmark instances. European Journal of Operational Research, 237(1), 71–81.CrossRefGoogle Scholar
  12. Burke, E. K., Curtois, T., Post, G., Qu, R., & Veltman, B. (2008). A hybrid heuristic ordering and variable neighbourhood search for the nurse rostering problem. European Journal of Operational Research, 188(2), 330–341.CrossRefGoogle Scholar
  13. Burke, E. K., Curtois, T., Qu, R., & Vanden Berghe, G. (2009). A scatter search methodology for the nurse rostering problem. Journal of the Operational Research Society, 61(11), 1667–1679.CrossRefGoogle Scholar
  14. Burke, E. K., Curtois, T., Qu, R., & Vanden Berghe, G. (2013). A time predefined variable depth search for nurse rostering. INFORMS Journal on Computing, 25(3), 411–419.CrossRefGoogle Scholar
  15. Burke, E. K., Li, J., & Qu, R. (2010). A hybrid model of integer programming and variable neighbourhood search for highly-constrained nurse rostering problems. European Journal of Operational Research, 203(2), 484–493.CrossRefGoogle Scholar
  16. Cappanera, P., & Gallo, G. (2004). A multicommodity flow approach to the crew rostering problem. Operations Research, 52(4), 583–596.CrossRefGoogle Scholar
  17. Causmaecker, P., & Vanden Berghe, G. (2010). A categorisation of nurse rostering problems. Journal of Scheduling, 14(1), 3–16.CrossRefGoogle Scholar
  18. Cheang, B., Li, H., Lim, A., & Rodrigues, B. (2003). Nurse rostering problems-a bibliographic survey. European Journal of Operational Research, 151(3), 447–460.CrossRefGoogle Scholar
  19. Dowsland, K. A. (1998). Nurse scheduling with tabu search and strategic oscillation. European Journal of Operational Research, 106(2–3), 393–407.CrossRefGoogle Scholar
  20. Drake, R. G. (2014). The nurse rostering problem: From operational research to organizational reality? Journal of Advanced Nursing, 70(4), 800–810.CrossRefGoogle Scholar
  21. Ernst, A., Jiang, H., Krishnamoorthy, M., & Sier, D. (2004). Staff scheduling and rostering: A review of applications, methods and models. European Journal of Operational Research, 153(1), 3–27.CrossRefGoogle Scholar
  22. Gendreau, M., & Potvin, J. Y. (2010). Handbook of metaheuristics. International series in operations research and management science (Vol. 146). New York: Springer.Google Scholar
  23. Hadwan, M., & Ayob, M. (2010). A constructive shift patterns approach with simulated annealing for nurse rostering problem. In Information Technology ITSim 2010 International Symposium in 1.Google Scholar
  24. Haspeslagh, S., De Causmaecker, P., Schaerf, A., & Stølevik, M. (2012). The first international nurse rostering competition 2010. Annals of Operations Research, 218, 221–236.CrossRefGoogle Scholar
  25. He, F., & Qu, R. (2012). A constraint programming based column generation approach to nurse rostering problems. Computers & Operations Research, 39(12), 3331–3343.CrossRefGoogle Scholar
  26. Kellogg, D. L., & Walczak, S. (2007). Nurse scheduling: From academia to implementation or not? Interfaces, 37(4), 355–369.CrossRefGoogle Scholar
  27. Lim, G. J., Mobasher, A., Kardar, L., & Cote, M. J. (2012). Handbook of healthcare system scheduling. International series in operations research and management science (Vol. 168). New York: Springer.Google Scholar
  28. Lü, Z., & Hao, J. K. (2012). Adaptive neighborhood search for nurse rostering. European Journal of Operational Research, 218(3), 865–876.CrossRefGoogle Scholar
  29. Maenhout, B., & Vanhoucke, M. (2009). Branching strategies in a branch-and-price approach for a multiple objective nurse scheduling problem. Journal of Scheduling, 13(1), 77–93.CrossRefGoogle Scholar
  30. Michalewicz, Z., & Fogel, D. B. (2004). How to solve it: Modern heuristics. Berlin: Springer.CrossRefGoogle Scholar
  31. Online Z. (2013). Fachkräftemangel - regierung wirbt um ausländische pflegekräfte.
  32. Osogami, T., & Imai, H. (2000). Classification of various neighborhood operations for the nurse scheduling problem. Lecture Notes in Computer Science, 1969, 72–83.CrossRefGoogle Scholar
  33. Qu, R., & He, F. (2010). A hybrid constraint programming approach for nurse rostering problems. European Journal of Operational Research, 203(2), 211–224.Google Scholar
  34. Santos, H. G., Toffolo, T. A., Gomes, R. A., & Ribas, S. (2016). Integer programming techniques for the nurse rostering problem. Annals of Operations Research, 239(1), 225–251.CrossRefGoogle Scholar
  35. Smet, P., Brucker, P., De Causmaecker, P., & Vanden Berghe, G. (2014). Polynomially solvable formulations for a class of nurse rostering problems. In Proceedings of the 10th international conference on the practice and theory of automated timetabling (pp. 408–419).Google Scholar
  36. Solos, I., Tassopoulos, I., & Beligiannis, G. (2013). A generic two-phase stochastic variable neighborhood approach for effectively solving the nurse rostering problem. Algorithms, 6(2), 278–308.CrossRefGoogle Scholar
  37. Stølevik, M., Nordlander, T. E., Riise, A., Frøyseth, H. (2011). A hybrid approach for solving real-world nurse rostering problems. In International Conference on Principles and Practice of Constraint Programming, Springer (pp. 85–99).Google Scholar
  38. Suhl, L., & Mellouli, T. (2013). Optimierungssysteme: Modelle, Verfahren, Software, Anwendungen. Berlin: Springer.CrossRefGoogle Scholar
  39. Valouxis, C., Gogos, C., Goulas, G., Alefragis, P., & Housos, E. (2012). A systematic two phase approach for the nurse rostering problem. European Journal of Operational Research, 219(2), 425–433.CrossRefGoogle Scholar
  40. van Omme, N., Perron, L., & Furnon, V. (2013). Or-tools users manual. Technical reports, GoogleGoogle Scholar
  41. Vanden Berghe, G. (2002). An advanced model and novel meta-heuristic solution methods to personnel scheduling in healthcare.
  42. Wright, P. D., Bretthauer, K. M., & Côté, M. J. (2006). Reexamining the nurse scheduling problem: Staffing ratios and nursing shortages. Decision Sciences, 37(1), 39–70.CrossRefGoogle Scholar
  43. Xie, L., & Suhl, L. (2015). Cyclic and non-cyclic crew rostering problems in public bus transit. OR Spectrum, 37(1), 99–136.CrossRefGoogle Scholar
  44. Zuse Institute Berlin. (2014). SCIP—Solving constraint integer programs.

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Leuphana University of LüneburgLüneburgGermany
  2. 2.Connext Communication GmbHPaderbornGermany

Personalised recommendations