Annals of Operations Research

, Volume 271, Issue 2, pp 1131–1163 | Cite as

Multi-attribute assignment of trains to departures in rolling stock management

A contribution to the EURO/ROADEF 2014 Challenge
  • Martin Josef GeigerEmail author
  • Sandra Huber
  • Sebastian Langton
  • Marius Leschik
  • Christian Lindorf
  • Ulrich Tüshaus
Rolling Stock Unit Management


The article describes our findings on the EURO/ROADEF 2014 Challenge problem. Several heuristic solution techniques have been implemented in a prototypical system for rolling stock management. First, the assignment of trains to departures is supported by a multi-attribute priority rule, for which extensive experiments have been conducted. The subsequent scheduling problem is then solved by a heuristic routing and scheduling concept. The feasibility of solutions is ensured by adopting a transaction model known from database programming to the scheduling problem domain. Besides our contributions to the solution of the optimization problem, a decision support system has been build that visualizes the movements of convoys in the network. Moreover, we make the source code of our optimization approach available with this article: doi: 10.17632/nc642wfw2k.1.


Rolling stock management Multi-attribute decision rules Train routing and scheduling Heuristics 


  1. Baker, K. R., & Scudder, G. D. (1990). Sequencing with earliness and tardiness penalties: A review. Operations Research, 38(1), 22–36.CrossRefGoogle Scholar
  2. Benoist, T., Gardi, F., & Jeanjean, A. (2012). Lessons learned from 15 years of operations research for French TV channel TF1. Interfaces, 42(6), 577–584.CrossRefGoogle Scholar
  3. Blazewicz, J., Lenstra, J., & Rinnooy Kan, A. (1983). Scheduling subject to resource constraints: Classification and complexity. Discrete Applied Mathematics, 5(1), 11–24.CrossRefGoogle Scholar
  4. Buljubašić, M., Vasquez, M., Gavranović, H., & Hanafi, S. (2014). Two phase heuristic for SNCF rolling stock problem. Technical Report S18, Ecole des Mines d’Alès, LGI2P Laboratory, Nîmes, France.Google Scholar
  5. Carey, M. (1994). A model and strategy for train pathing with choice of lines, platforms, and routes. Transportation Research Part B: Methodological, 28(5), 333–353.CrossRefGoogle Scholar
  6. Carey, M., & Carville, S. (2003). Scheduling and platforming trains at busy complex stations. Transportation Research Part A: Policy and Practice, 37(3), 195–224.Google Scholar
  7. Catusse, N., & Cambazard, H. (2014). ROADEF challenge 2014: A modeling approach, rolling stock unit management on railway sites. Technical Report HAL Id: hal-01056605, Laboratoire G-SCOP, Grenoble INP, France.
  8. Cheng, T., & Gupta, M. (1989). Survey of scheduling research involving due date determination decisions. European Journal of Operational Research, 38(2), 156–166.CrossRefGoogle Scholar
  9. Coelho, J., & Vanhoucke, M. (2011). Multi-mode resource-constrained project scheduling using RCPSP and SAT solvers. European Journal of Operational Research, 213(1), 73–82.CrossRefGoogle Scholar
  10. Cordeau, J. F., Toth, P., & Vigo, D. (1998). A survey of optimization models for train routing and scheduling. Transportation Science, 32(4), 380–404.CrossRefGoogle Scholar
  11. Corman, F., D’Ariano, A., Pacciarelli, D., & Pranzo, M. (2010). A tabu search algorithm for rerouting trains during rail operations. Transportation Research Part B: Methodological, 44(1), 175–192.CrossRefGoogle Scholar
  12. Estellon, B., Gardi, F., & Nouioua, K. (2008). Two local search approaches for solving real-life car sequencing problems. European Journal of Operational Research, 191(3), 928–944.CrossRefGoogle Scholar
  13. Freling, R., Lentink, R. M., Kroon, L. G., & Huisman, D. (2005). Shunting of passenger train units in a railway station. Transportation Science, 39(2), 261–272.CrossRefGoogle Scholar
  14. Fuchsberger, M. (2007). Solving the train scheduling problem in a main station area via a resource constrained space-time integer multi-commodity flow. Master thesis, Institute for Operations Research, ETH Zurich, Switzerland.Google Scholar
  15. Geraets, F., Kroon, L., Schoebel, A., Wagner, D., & Zaroliagiis, C. (Eds.). (2007). Algorithmic methods for railway optimization, lecture notes in computer science (Vol. 4359). Berlin: Springer.Google Scholar
  16. Gray, J. (1981). The transaction concept: Virtue and limitations. In Proceedings of the seventh international conference on very large databases (Vol. 7, pp. 144–154). Tandem Computers Incorporated.Google Scholar
  17. Huisman, D., Kroon, L. G., Lentink, R. M., & Vromans, M. J. C. M. (2005). Operations Research in passenger railway transportation. Statistica Neerlandica, 59(4), 467–497.CrossRefGoogle Scholar
  18. Janiak, A., Janiak, W. A., Krysiak, T., & Kwiatkowski, T. (2015). A survey on scheduling problems with due windows. European Journal of Operational Research, 242(2), 347–357.CrossRefGoogle Scholar
  19. Kroon, L., Huisman, D., Abbink, E., Fioole, P. J., Fischetti, M., Maróti, G., et al. (2009). The new Dutch timetable: The OR revolution. Interfaces, 39(1), 6–17.CrossRefGoogle Scholar
  20. Lentink, R. M., Fioole, P. J., Kroon, L. G., & van’t Woudt, C. (2006). Applying operations research techniques to planning of train shunting. In vanWezel et al. (2006), chap 15.Google Scholar
  21. Lusby, R. M., Larsen, J., Ehrgott, M., & Ryan, D. (2011). Railway track allocation: Models and methods. OR Spectrum, 33(4), 843–883.CrossRefGoogle Scholar
  22. Mehdizadeh, E., & Nezhad Dadgar, S. (2014). Using vibration damping optimization algorithm for resource constraint project scheduling problem with weighted earliness-tardiness penalties and interval due dates. Economic Computation and Economic Cybernetics Studies and Research, 48(1), 331–343.Google Scholar
  23. Ramond, F., & Marcos, N. (2014). Trains don’t vanish ! ROADEF EURO 2014 challenge problem description. Technical report, SNCF—-Innovation & Research Department.
  24. Ramond, F., Marcos, N., & Sourd, F. (2013). ROADEF/EURO 2014 Challenge—trains don’t vanish!. Technical Report, SNCF—Innovation & Research Department.Google Scholar
  25. Słowiński, R. (1981). Multiobjective network scheduling with efficient use of renewable and nonrenewable resources. European Journal of Operational Research, 7(3), 265–273.CrossRefGoogle Scholar
  26. Van Peteghem, V., & Vanhoucke, M. (2014). An experimental investigation of metaheuristics for the multi-mode resource-constrained project scheduling problem on new dataset instances. European Journal of Operational Research, 235(1), 62–72.CrossRefGoogle Scholar
  27. van Wezel, W., Jorna, R., & Meystel, A. (Eds.). (2006). Planning in intelligent systems: Aspects, motivations, and methods. Hoboken, NJ: Wiley.Google Scholar
  28. Zwaneveld, P. J., Kroon, L. G., Romeijn, H. E., Salomon, M., Dauzère-Pérès, S., van Hoesel, S. P. M., et al. (1996). Routing trains through railway stations: Model formulation and algorithms. Transportation Science, 30(3), 181–194.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Martin Josef Geiger
    • 1
    Email author
  • Sandra Huber
    • 1
  • Sebastian Langton
    • 1
  • Marius Leschik
    • 1
  • Christian Lindorf
    • 1
  • Ulrich Tüshaus
    • 1
  1. 1.Helmut Schmidt University, University of the Federal Armed ForcesHamburgGermany

Personalised recommendations