Annals of Operations Research

, Volume 260, Issue 1–2, pp 293–320 | Cite as

Early warning on stock market bubbles via methods of optimization, clustering and inverse problems

  • Efsun Kürüm
  • Gerhard-Wilhelm Weber
  • Cem Iyigun
S.I.: Advances of OR in Commodities and Financial Modelling


In order to avoid destructive results of financial bubbles which affect the entire economy, it is important to develop an early-warning signalling. By using optimization-supported tools, we introduce a new method for an early-warning signalling which approaches the bubble concept geometrically by determining and evaluating ellipsoids. We generate a volume-based index via minimum-volume covering ellipsoid clustering method, and to visualize these ellipsoids, we utilize Radon transform from the theory of the Inverse Problems. The analyses were conducted for US, Japan and China stock markets. In our study, we observe that when the bubble-burst time approaches, the volumes of the ellipsoids gradually decrease and, correspondingly, the figures obtained by Radon transform become more “brilliant”, i.e., more strongly warning.


Optimization Financial bubbles Early-warning Clustering Radon transform Ellipsoid 


  1. Allen, F., & Gorton, G. (1993). Churning bubbles. The Review of Economic Studies, 60(4), 813–836.CrossRefGoogle Scholar
  2. Aster, R. C., Borchers, B., & Thurber, C. (2012). Parameter estimation and inverse problems (2nd ed.). London: Academic Press.Google Scholar
  3. Baker, K. (2013). Singular value decomposition tutorial. Accessed 10 August 2013.
  4. Basoglu, F. (2012). Testing for rational bubbles in the Turkish stock market. M.Sc. Thesis, METU, Ankara.Google Scholar
  5. Blanchard, O. J. (1979). Speculative bubbles, crashes and rational expectations. Economic Letters, 3, 387–389.CrossRefGoogle Scholar
  6. Blanchard, O. J., & Watson, M. W. (1982). Bubbles, rational expectations and financial markets. NBER working paper no. 945.Google Scholar
  7. Brunnermeier, M. K. (2001). Asset pricing under asymmetric information: Bubbles, crashes, technical analysis, and herding. New York: Oxford University Press.CrossRefGoogle Scholar
  8. Calverley, J. (2004). Bubbles and how to survive them. Boston: N. Brealey Publishing.Google Scholar
  9. Camerer, C. (1989). Bubbles and fads in asset prices. Journal of Economic Surveys, 3(1), 3–41.CrossRefGoogle Scholar
  10. Campbell, J., & Shiller, R. (1986). The dividend-price ratio and expectations of future dividends and discount factors. NBER working paper no. 2100.Google Scholar
  11. Carty, S. L. (2017). Definition of stock market bubble. Accessed 5 Feb 2017.
  12. Cont, R., & Tankov, P. (2004). Financial modelling with jump processes. Financial mathematics series. London/Boca Raton: Chapman&Hall/CRC.Google Scholar
  13. Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. Wiley series in communication. New York: Wiley.CrossRefGoogle Scholar
  14. De Long, J. B., Shleifer, A., Summers, L. H., & Waldmann, R. J. (1990). Positive feedback investment strategies and destabilizing rational speculation. The Journal of Finance, 45(2), 379–395.CrossRefGoogle Scholar
  15. Diba, B., & Grossman, H. (1988a). The theory of rational bubbles in stock prices. The Economic Journal, 98(392), 746–754.CrossRefGoogle Scholar
  16. Diba, B., & Grossman, H. (1988b). Explosive rational bubbles in stock prices? American Economic Review, 78, 520–530.Google Scholar
  17. Evans, G. (1991). Pitfalls in testing for explosive bubbles in asset prices. American Economic Review, 31, 922–930.Google Scholar
  18. Feeman, T. (2015). The Radon transform. In The mathematics of medical imaging: Beginner’s guide (pp. 13–37). Switzerland: Springer.Google Scholar
  19. Froot, K., & Obstfeld, M. (1991). Intrinsic bubbles: The case of stock prices. American Economic Review, 81, 1189–1214.Google Scholar
  20. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. San Francisco: W. H. Freeman.Google Scholar
  21. Grossman, S. J., & Shiller, R. J. (1981). The determinants of the variability of stock market prices. NBER working paper no. 564.Google Scholar
  22. Gürkaynak, R. S. (2008). Econometric tests of asset price bubbles: Taking stock. Journal of Economic Surveys, 22, 166–186.CrossRefGoogle Scholar
  23. Harrison, J. M., & Kreps, D. M. (1978). Speculative investor behavior in a stock market with heterogeneous expectations. The Quarterly Journal of Economics, 92(2), 323–336.CrossRefGoogle Scholar
  24. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning. Springer series in statistics (2nd ed.). Berlin: Springer.Google Scholar
  25. Herman, G. T., & Kuba, A. (1999). Discrete tomography foundations, algorithms, and applications. Boston: Birkhäuser.Google Scholar
  26. Hoilund, C. (2007). The Radon transform. Accessed 10 June 2013.
  27. Jacobsson, E. (2009). How to predict crashes in financial markets with the log-periodic power law. Technical report, Stockholm University.Google Scholar
  28. Johansen, A., & Sornette, D. (2006). Endogenous versus exogenous crashes in financial markets. Brussels Economic Review (Cahiers economiques de Bruxelles). Special issue on nonlinear analysis 49(3/4).Google Scholar
  29. Johansen, A., Ledoit, O., & Sornette, D. (2000). Crashes as critical points. International Journal of Theoretical and Applied Finance, 3(2), 219–255.CrossRefGoogle Scholar
  30. Johansen, A., Sornette, D., & Ledoit, O. (1999). Predicting financial crashes using discrete scale invariance. Journal of Risk, 1(4), 5–32.CrossRefGoogle Scholar
  31. Karatsaz, I., & Shreve, S. (1991). Brownian motion and stochastic calculus. New York: Springer.Google Scholar
  32. Kürüm, E. (2014). Early warning on stock market bubbles via ellipsoidal clustering and inverse problems. Ph.D. Thesis, Middle East Technical University, Ankara.Google Scholar
  33. Kürüm, E., Weber, G. W., & Iyigun, C. (2013). Financial bubbles. In D. Zilberman & A. Pinto (Eds.), Modeling, optimization, dynamics and bioeconomics I (pp. 453–468). Switzerland: Springer.Google Scholar
  34. LeRoy, S., & Porter, R. (1981). The present-value relation: Tests based on implied variance bounds. Econometrica, 49, 555–574.CrossRefGoogle Scholar
  35. Metz, C. E., Herman, B. A., & Shen, J. H. (1998). Maximum likelihood estimation of ROC curves from continuously distributed data. Statistics in Medicine, 17, 1033–1053.CrossRefGoogle Scholar
  36. Shiller, R. (1981). Do stock prices move too much to be justified by subsequent changes in dividends? American Economic Review, 71, 421–436.Google Scholar
  37. Sornette, D. (2003). Critical market crashes. Physics Reports, 1(378), 1–98.CrossRefGoogle Scholar
  38. Sornette, D. (2003). Why stock markets crash: Critical events in complex financial systems. New Jersey: Princeton University Press.Google Scholar
  39. Sun, P., & Freund, R. M. (2004). Computation of minimum-volume covering ellipsoids. Operations Research, 52(5), 690–706.CrossRefGoogle Scholar
  40. West, K. (1987). A specification test for speculative bubbles. Quarterly Journal of Economics, 102, 553–580.CrossRefGoogle Scholar
  41. West, K. (1988a). Dividend innovations and stock price volatility. Econometrica, 56, 37–61.CrossRefGoogle Scholar
  42. West, K. (1988b). Bubbles, fads and stock price volatility tests: A partial evaluation. Journal of Finance, 43, 639–656.CrossRefGoogle Scholar
  43. Yahoo finance. (2013). Accessed 5 Aug 2013.
  44. Yan, W. (2011). Identification and forecasts of financial bubbles. Ph.D. Thesis, ETH Zurich.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Efsun Kürüm
    • 1
  • Gerhard-Wilhelm Weber
    • 2
  • Cem Iyigun
    • 3
  1. 1.Department of Banking and FinanceNear East UniversityNicosia, Mersin 10Turkey
  2. 2.Institute of Applied MathematicsMETUAnkaraTurkey
  3. 3.Department of Industrial EngineeringMETUAnkaraTurkey

Personalised recommendations