Annals of Operations Research

, Volume 266, Issue 1–2, pp 329–348 | Cite as

Constant proportion portfolio insurance in defined contribution pension plan management

  • Busra Zeynep TemocinEmail author
  • Ralf Korn
  • A. Sevtap Selcuk-Kestel
Analytical Models for Financial Modeling and Risk Management


We consider the optimal portfolio problem with minimum guarantee protection in a defined contribution pension scheme. We compare various versions of guarantee concepts in a labor income coupled CPPI-framework with random future labor income. Besides classical deterministic guarantees we also introduce path-dependent guarantees. To ensure that there is no bias in the comparison, we obtain the optimal CPPI-multiplier for each guarantee framework via using a classical stochastic control approach.


Optimal portfolio CPPI Portfolio insurance Defined contribution pension plans 

JEL Classification

G11 G22 


  1. Balder, S., & Mahayni, A. (2010). Cash-lock comparison of portfolio insurance strategies Working paper, MSM, Duisburg University.Google Scholar
  2. Bertrand, P., & Prigent, J.-L. (2005). Portfolio insurance strategies: OBPI versus CPPI. Finance, 26(1), 5–32.Google Scholar
  3. Black, F., & Jones, R. (1987). Simplifying portfolio insurance. The Journal of Portfolio Management, 14, 48–51.CrossRefGoogle Scholar
  4. Boulier, J.-F., Huang, S., & Taillard, G. (2001). Optimal management under stochastic interest rates: The case of a protected defined contribution pension fund. Insurance: Mathematics and Economics, 28, 172–189.Google Scholar
  5. Cairns, A. J. G., Blake, D., & Dowd, K. (2006). Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans. Journal of Economic Dynamics and Control, 30(5), 843–877.CrossRefGoogle Scholar
  6. Davis, E. P. (1995). Pension funds: Retirement-income security and capital markets: An international perspective. Oxford: Oxford University Press.Google Scholar
  7. Devolder, P., Janssen, J., & Manca, R. (2013). Stochastic methods for pension funds. London: Wiley.Google Scholar
  8. Horsky, R. (2012). Barrier Option Pricing and CPPI-Optimization. Ph.D. thesis, TU Kaiserslautern.Google Scholar
  9. Korn, R., & Krekel, M. (2002). Optimal portfolios with fixed consumption and income streams. Working paper, University of Kaiserslautern.Google Scholar
  10. Korn, R., & Korn, E. (2001). Option pricing and portfolio optimization—Modern methods of financial mathematics. Providence, RI: American Mathematics Society.Google Scholar
  11. Korn, R., & Kraft, H. (2002). A stochastic control approach to portfolio problems with stochastic interest rates. SIAM Journal on Control and Optimization, 40(4), 1250–1269.CrossRefGoogle Scholar
  12. Perold, A., & Sharpe, W. (1988). Dynamic strategies for asset allocation. Financial Analyst Journal, 16–27.Google Scholar
  13. Tankov, P. (2010). Pricing and hedging gap risk. The Journal of Computational Finance, 13(3), 33–59.CrossRefGoogle Scholar
  14. Temocin, B. Z. (2015). Constant Proportion Portfolio Insurance in Defined Contribution Pension Plan Management. Doctoral dissertation, Middle East Technical University, Ankara, Turkey.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute of Applied MathematicsMiddle East Technical UniversityAnkaraTurkey
  2. 2.Department of MathematicsUniversity of Kaiserslautern and Financial MathematicsKaiserslauternGermany

Personalised recommendations