# Constant proportion portfolio insurance in defined contribution pension plan management

Analytical Models for Financial Modeling and Risk Management

First Online:

- 275 Downloads
- 2 Citations

## Abstract

We consider the optimal portfolio problem with minimum guarantee protection in a defined contribution pension scheme. We compare various versions of guarantee concepts in a labor income coupled CPPI-framework with random future labor income. Besides classical deterministic guarantees we also introduce path-dependent guarantees. To ensure that there is no bias in the comparison, we obtain the optimal CPPI-multiplier for each guarantee framework via using a classical stochastic control approach.

## Keywords

Optimal portfolio CPPI Portfolio insurance Defined contribution pension plans## JEL Classification

G11 G22## References

- Balder, S., & Mahayni, A. (2010). Cash-lock comparison of portfolio insurance strategies Working paper, MSM, Duisburg University.Google Scholar
- Bertrand, P., & Prigent, J.-L. (2005). Portfolio insurance strategies: OBPI versus CPPI.
*Finance*,*26*(1), 5–32.Google Scholar - Black, F., & Jones, R. (1987). Simplifying portfolio insurance.
*The Journal of Portfolio Management*,*14*, 48–51.CrossRefGoogle Scholar - Boulier, J.-F., Huang, S., & Taillard, G. (2001). Optimal management under stochastic interest rates: The case of a protected defined contribution pension fund.
*Insurance: Mathematics and Economics*,*28*, 172–189.Google Scholar - Cairns, A. J. G., Blake, D., & Dowd, K. (2006). Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans.
*Journal of Economic Dynamics and Control*,*30*(5), 843–877.CrossRefGoogle Scholar - Davis, E. P. (1995).
*Pension funds: Retirement-income security and capital markets: An international perspective*. Oxford: Oxford University Press.Google Scholar - Devolder, P., Janssen, J., & Manca, R. (2013).
*Stochastic methods for pension funds*. London: Wiley.Google Scholar - Horsky, R. (2012).
*Barrier Option Pricing and CPPI-Optimization*. Ph.D. thesis, TU Kaiserslautern.Google Scholar - Korn, R., & Krekel, M. (2002). Optimal portfolios with fixed consumption and income streams. Working paper, University of Kaiserslautern.Google Scholar
- Korn, R., & Korn, E. (2001).
*Option pricing and portfolio optimization—Modern methods of financial mathematics*. Providence, RI: American Mathematics Society.Google Scholar - Korn, R., & Kraft, H. (2002). A stochastic control approach to portfolio problems with stochastic interest rates.
*SIAM Journal on Control and Optimization*,*40*(4), 1250–1269.CrossRefGoogle Scholar - Perold, A., & Sharpe, W. (1988). Dynamic strategies for asset allocation.
*Financial Analyst Journal*, 16–27.Google Scholar - Tankov, P. (2010). Pricing and hedging gap risk.
*The Journal of Computational Finance*,*13*(3), 33–59.CrossRefGoogle Scholar - Temocin, B. Z. (2015).
*Constant Proportion Portfolio Insurance in Defined Contribution Pension Plan Management*. Doctoral dissertation, Middle East Technical University, Ankara, Turkey.Google Scholar

## Copyright information

© Springer Science+Business Media New York 2017