Annals of Operations Research

, Volume 248, Issue 1–2, pp 25–73 | Cite as

Minimizing value-at-risk in single-machine scheduling

Original Paper


The vast majority of the machine scheduling literature focuses on deterministic problems in which all data is known with certainty a priori. In practice, this assumption implies that the random parameters in the problem are represented by their point estimates in the scheduling model. The resulting schedules may perform well if the variability in the problem parameters is low. However, as variability increases accounting for this randomness explicitly in the model becomes crucial in order to counteract the ill effects of the variability on the system performance. In this paper, we consider single-machine scheduling problems in the presence of uncertain parameters. We impose a probabilistic constraint on the random performance measure of interest, such as the total weighted completion time or the total weighted tardiness, and introduce a generic risk-averse stochastic programming model. In particular, the objective of the proposed model is to find a non-preemptive static job processing sequence that minimizes the value-at-risk (VaR) of the random performance measure at a specified confidence level. We propose a Lagrangian relaxation-based scenario decomposition method to obtain lower bounds on the optimal VaR and provide a stabilized cut generation algorithm to solve the Lagrangian dual problem. Furthermore, we identify promising schedules for the original problem by a simple primal heuristic. An extensive computational study on two selected performance measures is presented to demonstrate the value of the proposed model and the effectiveness of our solution method.


Single-machine scheduling Stochastic scheduling Value-at-risk Probabilistic constraint Stochastic programming Scenario decomposition Cut generation Dual stabilization K-assignment problem 


  1. Ahmed, S. (2006). Convexity and decomposition of mean-risk stochastic programs. Mathematical Programming, 106(3), 433–446.CrossRefGoogle Scholar
  2. Akker, M., & Hoogeveen, H. (2008). Minimizing the number of late jobs in a stochastic setting using a chance constraint. Journal of Scheduling, 11(1), 59–69.CrossRefGoogle Scholar
  3. Alonso-Ayuso, A., Escudero, L., Ortuño, M. O., & Pizarro, C. (2007). On a stochastic sequencing and scheduling problem. Computers and Operations Research, 34(9), 2604–2624.CrossRefGoogle Scholar
  4. Aloulou, M. A., & Croce, F. D. (2008). Complexity of single machine scheduling problems under scenario-based uncertainty. Operations Research Letters, 36(3), 338–342.CrossRefGoogle Scholar
  5. Artzner, P., Delbaen, F., Eber, J. M., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9(3), 203–227.CrossRefGoogle Scholar
  6. Atakan, S., Tezel, B., Bülbül, K., & Noyan, N. (2011). Minimizing value-at-risk in the single-machine total weighted tardiness problem. In Proceedings of the 5th Multidisciplinary International Scheduling Conference on Scheduling: Theory and Applications (MISTA 2011), 9–11 August 2011 (pp. 215–229). Arizona: Phoenix.Google Scholar
  7. Baker, K. R., & Keller, B. (2010). Solving the single-machine sequencing problem using integer programming. Computers and Industrial Engineering, 59(4), 730–735.CrossRefGoogle Scholar
  8. Beck, J. C., & Wilson, N. (2007). Proactive algorithms for job shop scheduling with probabilistic durations. Journal of Artificial Intelligence Research, 28(1), 183–232.Google Scholar
  9. Ben Amor, H. M., Desrosiers, J., & Frangioni, A. (2009). On the choice of explicit stabilizing terms in column generation. Discrete Applied Mathematics, 157(6), 1167–1184.CrossRefGoogle Scholar
  10. Birge, J., & Louveaux, F. (1997). Introduction to stochastic programming. New York: Springer.Google Scholar
  11. Bonfietti, A., Lombardi, M., & Milano, M. (2014). Disregarding duration uncertainty in partial order schedules? Yes, we can! In Simonis, H. (ed) Integration of AI and OR techniques in constraint programming, volume 8451 of Lecture notes in computer science (pp. 210–225). New York: Springer.Google Scholar
  12. Burkard, R., Dell’Amico, M., & Martello, S. (2009). Assignment problems. Philadelphia: Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
  13. Carøe, C. C., & Schultz, R. (1999). Dual decomposition in stochastic integer programming. Operations Research Letters, 24(1–2), 37–45.CrossRefGoogle Scholar
  14. Carøe, C., & Tind, J. (1998). L-shaped decomposition of two-stage stochastic programs with integer recourse. Mathematical Programming, 83(1), 451–464.CrossRefGoogle Scholar
  15. Cont, R., Deguest, R., & Scandolo, G. (2010). Robustness and sensitivity analysis of risk measurement procedures. Quantitative Finance, 10(6), 593–606.CrossRefGoogle Scholar
  16. Daniels, R. L., & Carrillo, J. (1997). \(\beta \)-robust scheduling for single-machine systems with uncertain processing times. IIE Transactions, 29(11), 977–985.Google Scholar
  17. Daniels, R., & Kouvelis, P. (1995). Robust scheduling to hedge against processing time uncertainty in single-stage production. Management Science, 41(2), 363–376.CrossRefGoogle Scholar
  18. Danielsson, J. & Zhou, C. (2015). Why risk is so hard to measure. Technical report, Working Paper, SSRN:
  19. Danielsson, J., Jorgensen, B. N., Mandira, S., Samorodnitsky, G., & De Vries, C. G. (2005). Subadditivity re–examined: The case for value-at-risk. Discussion paper, 549. Financial Markets Group, London School of Economics and Political Science, London.Google Scholar
  20. Davis, M. (2015). Consistency of risk measure estimates. Technical report, Working Paper, SSRN:
  21. de Farias, I. R. Jr., Zhao, H., & Zhao, M. (2010). A family of inequalities valid for the robust single machine scheduling polyhedron. Computers and Operations Research, 37(9), 1610–1614.Google Scholar
  22. Dentcheva, D. (2006). Optimization models with probabilistic constraints. In G. Calafiore & F. Dabbene (Eds.), Probabilistic and randomized methods for design under uncertainty (pp. 49–97). London: Springer.CrossRefGoogle Scholar
  23. Du, J., & Leung, J. Y.-T. (1990). Minimizing total tardiness on one machine is NP-hard. Mathematics of Operations Research, 15(3), 483–495.CrossRefGoogle Scholar
  24. Frangioni, A. (2005). About Lagrangian methods in integer optimization. Annals of Operations Research, 139(1), 163–193.CrossRefGoogle Scholar
  25. Gaivoronski, A. A., & Pflug, G. C. (2005). Value-at-risk in portfolio optimization: Properties and computational approach. Journal of Risk, 7(2), 1–31.CrossRefGoogle Scholar
  26. Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1979). Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5, 287–326.CrossRefGoogle Scholar
  27. Gutjahr, W. J., Hellmayr, A., & Pflug, G. C. (1999). Optimal stochastic single-machine-tardiness scheduling by stochastic branch-and-bound. European Journal of Operational Research, 117(2), 396–413.CrossRefGoogle Scholar
  28. Helmberg, C. (2011). The ConicBundle library for convex optimization. Last viewed on August 16, 2013.Google Scholar
  29. Heyde, C. C., Kou, S. G., & Peng, X. H. (2006). What is a good risk measure: Bridging the gaps between data, coherent risk measures, and insurance risk measures. Technical report, Columbia University.Google Scholar
  30. IBM ILOG CPLEX (2012). IBM ILOG CPLEX Optimization Studio 12.5 Information Center. Last viewed on April 8, 2014.
  31. Ibragimov, R., & Walden, J. (2007). The limits of diversification when losses may be large. Journal of Banking and Finance, 31(8), 2551–2569.CrossRefGoogle Scholar
  32. Jörnsten, K. O., Näsberg, M., & Smeds, P. A. (1985). Variable splitting: A new Lagrangean relaxation approach to some mathematical programming models. Sweden: Linköping University, Department of Mathematics.Google Scholar
  33. Kallehauge, B., Larsen, J., & Madsen, O. B. G. (2006). Lagrangian duality applied to the vehicle routing problem with time windows. Computers and Operations Research, 33(5), 1464–1487.CrossRefGoogle Scholar
  34. Kanet, J., & Sridharan, V. (2000). Scheduling with inserted idle time: Problem taxonomy and literature review. Operations Research, 48(1), 99–110.CrossRefGoogle Scholar
  35. Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller, J. W. Thatcher, & J. D. Bohlinger (Eds.), Complexity of computer computations. The IBM research symposia series (pp. 85–103). New York: Springer.CrossRefGoogle Scholar
  36. Kasperski, A. (2005). Minimizing maximal regret in the single machine sequencing problem with maximum lateness criterion. Operations Research Letters, 33(4), 431–436.CrossRefGoogle Scholar
  37. Kasperski, A., Kurpisz, A., & Zieliński, P. (2012). Approximating a two-machine flow shop scheduling under discrete scenario uncertainty. European Journal of Operational Research, 217(1), 36–43.CrossRefGoogle Scholar
  38. Kataoka, S. (1963). A stochastic programming model. Econometrica, 31(1/2), 181–196.CrossRefGoogle Scholar
  39. Keha, A. B., Khowala, K., & Fowler, J. W. (2009). Mixed integer programming formulations for single machine scheduling problems. Computers and Industrial Engineering, 56(1), 357–367.CrossRefGoogle Scholar
  40. Klein Haneveld, W. K., & van der Vlerk, M. H. (1999). Stochastic integer programming: General models and algorithms. Annals of Operations Research, 85, 39–57.CrossRefGoogle Scholar
  41. Kou, S., Peng, X., & Heyde, C. C. (2013). External risk measures and Basel accords. Mathematics of Operations Research, 38(3), 393–417.CrossRefGoogle Scholar
  42. Laporte, G., & Louveaux, F. (1993). The integer L-shaped method for stochastic integer programs with complete recourse. Operations Research Letters, 13(3), 133–142.CrossRefGoogle Scholar
  43. Larsen, N., Mausser, H., & Uryasev, S. (2002). Algorithms for optimization of value-at-risk. In P. M. Pardalos & V. K. Tsitsiringos (Eds.), Financial engineering, E-commerce and supply chain, volume 70 of Applied optimization (Vol. 70, pp. 19–46). New York: Springer.Google Scholar
  44. Lenstra, J. K., Rinnooy Kan, A. H. G., & Brucker, P. (1977). Complexity of machine scheduling problems. Annals of Discrete Mathematics, 1, 343–362.CrossRefGoogle Scholar
  45. Louveaux, F. V., & Schultz, R. (2003). Stochastic integer programming. In A. Ruszczyński & A. Shapiro (Eds.), Stochastic programming, volume 10 of Handbooks in operations research and management science (Vol. 10, pp. 213–266). Amsterdam: Elsevier.Google Scholar
  46. Lu, C.-C., Lin, S.-W., & Ying, K.-C. (2012). Robust scheduling on a single machine to minimize total flow time. Computers and Operations Research, 39(7), 1682–1691.CrossRefGoogle Scholar
  47. Marsten, R. E., Hogan, W. W., & Blankenship, J. W. (1975). The BOXSTEP method for large-scale optimization. Operations Research, 23(3), 389–405.CrossRefGoogle Scholar
  48. Noyan, N. (2012). Risk-averse two-stage stochastic programming with an application to disaster management. Computers and Operations Research, 39(3), 541–559.CrossRefGoogle Scholar
  49. Ogryczak, W., & Ruszczyński, A. (2002). Dual stochastic dominance and related mean-risks models. SIAM Journal on Optimization, 13(2), 60–78.CrossRefGoogle Scholar
  50. Pang, J., & Leyffer, S. (2004). On the global minimization of the value-at-risk. Optimization Methods and Software, 19(5), 611–631.CrossRefGoogle Scholar
  51. Pascoal, M., Captivo, M. E., & Clímaco, J. (2003). A note on a new variant of Murty’s ranking assignments algorithm. 4OR, 255(1), 243–255.Google Scholar
  52. Pflug, G. C., & Römisch, W. (2007). Modeling, managing and measuring risk. Singapore: World Scientific Publishing.CrossRefGoogle Scholar
  53. Pinedo, M. (2008). Scheduling: Theory, algorithms, and systems (3rd ed.). New York: Springer.Google Scholar
  54. Pinedo, M., & Singer, M. (1999). A shifting bottleneck heuristic for minimizing the total weighted tardiness in a job shop. Naval Research Logistics, 46(1), 1–17.CrossRefGoogle Scholar
  55. Potts, C., & van Wassenhove, L. (1982). A decomposition algorithm for the single machine total tardiness problem. Operations Research Letters, 1(5), 177–181.CrossRefGoogle Scholar
  56. Prékopa, A. (1995). Stochastic programming. Dordrecht, Boston: Kluwer Academic.CrossRefGoogle Scholar
  57. Rockafellar, R., & Uryasev, S. (2000). Optimization of conditional value at risk. The Journal of Risk, 2(3), 21–41.CrossRefGoogle Scholar
  58. Rockafellar, R. T., & Wets, R. J.-B. (1991). Scenarios and policy aggregation in optimization under uncertainty. Mathematics of Operations Research, 16(1), 119–147.CrossRefGoogle Scholar
  59. Sarin, S. C., Sherali, H. D., & Liao, L. (2014). Minimizing conditional-value-at-risk for stochastic scheduling problems. Journal of Scheduling, 17(1), 5–15.CrossRefGoogle Scholar
  60. Sarykalin, S., Serraino, G., & Uryasev, S. (2008). Value-at-risk vs. conditional value-at-risk in risk management and optimization. In Tutorials in operations research: State-of-the-art decision-making tools in the information-intensive age (chap. 13, pp. 270–294). Hanover, MD: INFORMS. doi:10.1287/educ.1080.0052.
  61. Schultz, R., & Tiedemann, S. (2003). Risk aversion via excess probabilities in stochastic programs with mixed-integer recourse. SIAM Journal on Optimization, 14(1), 115–138.CrossRefGoogle Scholar
  62. Schultz, R., & Tiedemann, S. (2006). Conditional value-at-risk in stochastic programs with mixed-integer recourse. Mathematical Programming, 105(2), 365–386.CrossRefGoogle Scholar
  63. Sen, S. (2005). Algorithms for stochastic mixed-integer programming models. In K. Aardal, G. L. Nemhauser, & R. Weismantel (Eds), Discrete optimization, volume 12 of Handbooks in operations research and management science (pp. 515–558). Elsevier.Google Scholar
  64. Shapiro, A., Dentcheva, D., & Ruszczyński, A. (2009). Lectures on stochastic programming: Modeling and theory (Vol. 9). Philadelphia: SIAM.CrossRefGoogle Scholar
  65. Srinivasan, V. (1971). A hybrid algorithm for the one machine sequencing problem to minimize total tardiness. Naval Research Logistics Quarterly, 18(3), 317–327.CrossRefGoogle Scholar
  66. Tanaka, S., Fujikuma, S., & Araki, M. (2009). An exact algorithm for single-machine scheduling without machine idle time. Journal of Scheduling, 12(6), 575–593.CrossRefGoogle Scholar
  67. van de Panne, C., & Popp, W. (1963). Minimum cost cattle feed under probabilistic protein constraints. Management Science, 9(3), 405–430.CrossRefGoogle Scholar
  68. van der Vlerk, M. H. (1996–2007). Stochastic integer programming bibliography. World Wide Web.
  69. Van Slyke, R. M., & Wets, R. (1969). L-shaped linear programs with applications to optimal control and stochastic programming. SIAM Journal on Applied Mathematics, 17(4), 638–663.CrossRefGoogle Scholar
  70. Wolsey, L. A. (1998). Integer programming. New York: Wiley.Google Scholar
  71. Wozabal, D. (2012). Value-at-risk optimization using the difference of convex algorithm. OR Spectrum, 34(4), 861–883.CrossRefGoogle Scholar
  72. Wozabal, D., Hochreiter, R., & Pflug, G. C. (2010). A difference of convex formulation of value-at-risk constrained optimization. Optimization, 59(3), 377–400.CrossRefGoogle Scholar
  73. Wu, C. W., Brown, K. N., & Beck, J. C. (2009). Scheduling with uncertain durations: Modeling \(\beta \)-robust scheduling with constraints. Computers and Operations Research, 36(8), 2348–2356.CrossRefGoogle Scholar
  74. Yamai, Y., & Yoshiba, T. (2002a). Comparative analyses of expected shortfall and value-at-risk: Their estimation error, decomposition, and optimization. Monetary and Economic Studies, 20(1), 87–121.Google Scholar
  75. Yamai, Y., & Yoshiba, T. (2002b). Comparative analysis with expected shortfall (3): Their validity under market stress. Monetary and Economic Studies, 20(3), 181–237.Google Scholar
  76. Yang, J., & Yu, G. (2002). On the robust single machine scheduling problem. Journal of Combinatorial Optimization, 6(1), 17–33.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Industrial Engineering ProgramSabancı UniversityOrhanlı, Tuzla, IstanbulTurkey

Personalised recommendations